

An IP Address Management Solution for a Server Solution
Provider

By
Matthew G. Doyle

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

28th September 2005

ABSTRACT

An IP Address Management Solution for a Server Solution
Provider

 By
 Matthew G. Doyle

Increasing demand for Internet access for businesses and individuals has seen
an increasing demand on the IPv4 address space and made IP addresses a
valuable asset. As with any asset, a company’s IP address space must be
managed well and protected from those who would damage or despoil it. A
system to assist an organization with its efforts ought to be welcome indeed. The
main goal of this project is to create such a system. The project analyzes some
currently employed methods of IP address management and prevention of IP
theft in particular. Methods such as layer-2-implemented theft prevention and
passive reconnaissance tools are discussed and their shortcomings noted. A
review of the pertinent literature is offered. The proposed solution, a combination
of an active reconnaissance tool and record management system, is explained
from both design and construction aspects. Finally, the system is evaluated and,
based on its user reception and performance, recommendations are made for
further work.

 DECLARATION

I hereby certify that this dissertation constitutes my own product, that
where the language of others is set forth, quotation marks so indicate, and that
appropriate credit is given where I have used the language, ideas, expressions or
writings of another.

I declare that the dissertation describes original work that has not

previously been presented for the award of any other degree of any institution.

Signed,

 Matthew G. Doyle

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the project sponsor for agreeing to

allow me to work with them in the development of this project. Their openness to
my questions, cooperation in getting employee feedback, and expertise at times
when needed is greatly appreciated. It is not easy to allow someone to pick at
weak spots (which were few and far between), probe security-sensitive topics,
and get involved with the smallest details of day-to-day technical operations;
diverting resources to assist in these activities must be even more difficult, and
for that assistance I am deeply grateful. While much of the project was
developed remotely, implementation does not happen without input from many
people. I thank the technicians, network engineers, and system administrators
who contributed to making this project a success. I must, of course, respect their
request for anonymity, but I cannot let their assistance go unacknowledged.

I would also like to extend my sincerest thanks to my employer for
assisting me with resources when necessary. Additionally, I thank them for time
off when needed and other “sanity-enhancing” measures, which they have been
very gracious in supplying whenever requested. The expertise and assistance
supplied by my co-workers and colleagues has been invaluable. Many, many
thanks to Jeremy Alons and Prescott Kulow for their assistance in brainstorming
and troubleshooting problems in the code. Brandon Ewing is owed a debt of
gratitude as well for help with certain particular sticky database issues. I am also
grateful for the consistent help with testing supplied by Andrew Howard, Shannon
Wittgreve, and Jeff Link. Last, but certainly not least, the input and support of
Terrance Bush and Travis Schaffner—on professional, technical, and personal
levels—is greatly appreciated. You are gentlemen and scholars, all.

On a final professional level, I absolutely must thank my dissertation
advisor, Kathleen Kelm. Without her sage advice, firm grasp of the issues, and
academic acumen, the entire project would have begun as blizzard of
inconsistencies, languished in the doldrums of lack of focus, and, finally and
tragically, disappeared in a puff of hardware and versioning problems. That it did
not is due to her guidance, for which I am deeply grateful.

A journey not begun cannot come to a conclusion. For encouragement to
take that first step three years ago, and consistent, unwavering support along the
way, I thank my lovely wife, Mary. Without her determination to see me through
the entire journey and, especially, without her support in its last stages, this
project would simply not exist.

Finally, to my kids, Andrew, Nathalie, and Alanna, who never—not for the
entire three years—complained that I was almost constantly perched in front of
my computer, working on my degree, I have only this to say: Thanks for
understanding.

Oh, and this: I’m back now.

TABLE OF CONTENTS

 Page

List of Figures ..vii

Chapter 1. Introduction ..8

1.1 The Current Environment ..8
1.2 Problems...9
1.3 Potential Solutions ..10
1.4 Proposed Solution...10
1.5 Conclusion ..15

Chapter 2. Review of Literature ...16

2.1 Review of Alternative Solutions...16
2.2 Review of the Proposed Solution ..19
2.3 Conclusion ..25

Chapter 3. Analysis and Design...27

3.1 Overview ...27
3.2 Binding IP Addresses..31
3.3 Unbinding IP Addresses..33
3.4 Querying IP Addresses ...34
3.5 Conclusion ..37

Chapter 4. Construction ...38

4.1 Overview ...38
4.2 Resources ...38
4.3 IP Address Querying ...38
4.4 IP Address Binding and Unbinding..45
4.5 Conclusion ..46

Chapter 5. Findings..47

5.1 Overview ...47
5.2 Functionality ..47
5.3 Performance..48
5.4 Conclusion ..49

Chapter 6. Conclusions and Recommendations for Further Work...............50

References Cited ...52

v

Appendix A. ipman Source Code..53

Appendix B. ipman_db Data Definition Language115

vi

 LIST OF FIGURES

Figure Page

Figure 1. A VLAN implementation...17

Figure 2. Ethernet frame ...20

Figure 3. ARP packet..20

Figure 4. Entity relationship diagram for ipman_db.....................................29

Figure 5. IP address management system context diagram30

Figure 6. IP address binding data flow diagram..32

Figure 7. IP address unbinding data flow diagram......................................33

Figure 8. IP address querying top-level data flow diagram34

Figure 9. IP address querying second-level data flow

diagram—first pass..35

Figure 10. IP address querying second-level data flow

diagram—second pass..36

vii

CHAPTER 1

 INTRODUCTION

1.1 The Current Environment

The growth of network access in the past twenty-five years has seen
remarkable developments in the technologies employed to make that
access possible. Especially in the past fifteen years, this growth has
expanded to, and then exploded upon, the public Internet. Increasing
demand for Internet access for businesses and individuals has seen an
increasing demand on the IPv4 address space and made IP addresses a
valuable asset. As with any asset, a company’s IP address space must be
managed well and protected from those who would damage or despoil it.
A system to assist an organization with its efforts ought to be welcome
indeed. The main goal of this project to create such a system.

The goal set for the project is the somewhat narrower goal of assisting
one particular organization, with the hope that the findings here can be
expanded to assist other organizations. The organization at hand, the
project sponsor, provides servers which customers rent on a monthly
basis, and rack them at one of two high-bandwidth datacenters. For
these rented servers (known as dedicated servers), the sponsor provides a
range of service level agreements, ranging from completely managed (the
customer does not even have administrative access) to completely
unmanaged (the sponsor does not have administrative access).
Additionally, it provides co-location service, whereby the customers
provide their own servers and the sponsors charge for rack space, power
consumption, and bandwidth. The sponsor does not have administrative
access to these servers. The servers, as mentioned, are racked in one of
two datacenters. Each datacenter has one aggregate switch and
numerous branch switches. Each server is hooked to one of the branch
switches which are in turn uplinked to the aggregate switch. This makes
one broadcast domain at each aggregate switch.

Key to the smooth operation of a server solution provider with a large
presence on the public Internet is the management of IP address space.
The sponsor currently addresses this need through two Web-based
interfaces into a MySQL backend database called the ‘dedicated
database’. When the sponsor receives an allocation of IP addresses from
one of its upstream providers, a record for the address space (the ‘base’,
usually a C-class) is added to the table base. This makes the addresses
in that base available for assignment to a customer. When a server is
ordered by a customer, a sales engineer allocates two IP addresses to it,
which are bound to the server's adapter during the course of preparing
the server for use by the customer. Records are added to the database

8

table ipaddr for those addresses, indicating that the addresses have been
assigned. A customer can request additional IP addresses for which
there is a monthly charge. A technician allocates requested IP addresses
by using a Web interface known as ipmanage, finding a free IP address in
the proper address range, and attempting to determine if the address is
in fact unused.

To this end, the technician normally uses a tool known as arping.
Written by Alexey Kuznetsov, this tool is widely distributed on many
*NIX-type systems. With most Linux distributions, it comes as part of
the iputils package. This particular tool sends out an Ethernet
broadcast of ARP who-has packets, requesting the MAC address of the
system with the IP address of interest. The arping utility is used rather
than a simple ping; many of the sponsor’s systems have disabled ICMP
responses, especially the Linux systems, so a simple ping would be
ignored too often to be useful in this regard.

If no response is received from the arping requests, it is assumed the IP
address is actually free, and the technician completes a Web form which
adds a record for the newly allocated IP address to the database table
ipaddr. When an IP address is returned to the pool of those available for
allocation (such as when a server is canceled or a customer no longer
needs an extra IP address), this record is deleted and the Web interface
shows that the address is available for reallocation.

1.2 Problems

A number of problems have become manifest within this particular
environment. Potentially the most damaging--although certainly rarest--
problem is the potential for a spammer or other network abuser to find
an IP address not currently in use, bind it to his adapter, and violate any
terms in the Acceptable Usage Policy he desires. The sponsor currently
have no technical means of tracking down the source of such a stolen IP
address easily; the only means of knowing the disposition of a given IP
address is through the records kept in the dedicated database. Any need
to track the location of an IP address outside of the records in the
dedicated database means watching the traffic through one of up to 40
switches for the IP address--which would narrow the search down to 23
servers in the event that the IP address is found in the outbound traffic
on the switch. Such a search can take hours or days, waste time, and
allow the abusive activity to continue long enough to result in serious
consequences.

A more common problem is allocating to a customer an IP address that
has previously been allocated to another customer. Despite policies
against it, it is not unheard of for a technician to simply rely on the

9

dedicated database when allocating an IP address. A related problem is
failure to update the database when an IP address is allocated. This
contributes to the previous problem and results in an IP address that is
essentially ‘lost’.

Finally, there is the possibility for any customer to take any unallocated
IP address and bind it to their server. As long as the address is not
involved in any network abuse, there is little chance that the sponsor
would ever find out. While the IP address is, according to the ipmanage
records, allocated, a technician getting an arping response from such an
address simply marks the address as allocated (indicating ‘????’ or
something similar for the server label) and finds a different, non-
responsive address to allocate. Given this situation, the sponsor
essentially loses out on the revenue that the IP address should be
generating, and valuable IPv4 address space is lost.

1.3 Potential Solutions

There are other approaches that can contribute to some of the aims of
this project. One of the major aims is the prevention of ‘stolen’ IP
addresses. To this end, the implementation of virtual LANs (VLANs) can
prevent users from using unauthorized IP addresses. A more verbose
description of this technology is presented in the next chapter. Briefly,
however, in this environment, ‘stolen’ IP addresses will not work outside
of the branch switch, as the packets would be stopped at the router.

A second current method is much closer to this project in its
implementation. A tool known as arpwatch, authored primarily by
Richard Leres from the Lawrence Berkeley National Laboratory, is widely
used to monitor Ethernet traffic. From an examination of the code and
the information in the man pages, arpwatch passively watches for ARP
traffic on the network segment. A few events are considered significant
and will trigger an email to an address supplied as an argument,
including the first occurrence of a MAC on a network, and a change in
IP-address-to-MAC pairings.

1.4 Proposed Solution

The current project proposes a different approach to those outlined. The
project begins with a brief discussion of the motivation behind creating a
new solution and then goes on to touch on the main features of the
solution, which will be described in more detail in the ensuing chapters.

10

1.4.1 Why current solutions are inadequate

IP address management is clearly not a new idea or need, and the above
potential solutions each have worth to contribute to a complete solution.
However, for varying reasons each of them fail to provide an adequate
solution for the provider.

Given that the main purpose of the project at hand is to prevent or
quickly detect the misappropriation of an IP address, it is not surprising
that the leading contender for a solution for this provider was the
implementation of VLANs. The potential exists with this technology to
make it technically impossible for IP addresses to be stolen. Since the
address will not route unless it has been added to the VLAN at the
switch, only authorized addresses will be able to send any kind of traffic
outside of whatever smaller, private environment they might have.

There are a number of reasons why this approach would not be
appropriate in the sponsor's current environment. The major drawback
to this is that, to implement it in a sane fashion, all address space would
need to be reclaimed and all devices renumerated with a new allocation
schemata. Currently, this would mean reclaiming and reallocation over
12,000 addresses—a task clearly beyond the sponsor given current
staffing levels.

Further, if the assignment of addresses is to be logical, it would be
extremely desirable for the sponsor to have it own autonomous system
number (ASN) from the regional Internet number registry (ARIN) and a
direct allotment from ARIN of IPv4 address space. Currently, the sponsor
receives its address space in allotments from upstream providers. Those
allotments come in a hodge-podge of random subnets that would make
intelligent reallotment to customers difficult at best; at worst, fractured
and extremely difficult to manage.

Finally, address security is but on facet of the sponsor’s current problem.
Other problems exist in that the ‘technical’ aspect of allocating an
address is divorced from the ‘recordkeeping’ aspect of the task. Given
this division, it is entirely too frequent that only one of the tasks is
accomplished. While the implementation of VLANs is, perhaps, the very
best way to solve the IP address theft problem, it does nothing to alleviate
the other issues facing the sponsor.

The existence of such tools as arpwatch, discussed above, have the virtue
of being much simpler to implement. However, existent tools still fall
short of meeting the sponsor’s needs in the current environment. Tools
such as arpwatch fall into the passive reconnaissance category of
Schiffman’s (2003, p. 5) taxonomy of network security tools. Clearly,

11

passive reconnaissance tools are not intrinsically flawed. However, the
sponsor’s belief was that the passive approach could easily lead to a
situation in which the single alert sent when an event occurred in the
passive paradigm would too frequently be ignored. The sponsor felt that
an active tool would better suit its needs.

Another weakness to the arpwatch approach is the alerts themselves.
These take the form of an email sent to an address supplied as an
argument. The issue for the sponsor is that each occurrence of a new
MAC, new IP-MAC pairing, and other events would lead to an emailed
alert—whether or not the event was of interest, and without regard to
whether the event was expected. As an example, consider the barrage of
emails to the sponsor’s ticket system that would have occurred when, as
recently occurred, a new server with 30 pre-ordered IP addresses came
online. The real concern here was that the technicians would be so used
to ‘the boy who cried wolf’ and being peppered with arpwatch emails, that
no action would be taken when the issue was one that required
immediate attention.

Moreover, the ‘databases’ in which arpwatch stores the IP-Ethernet
address pairings are flat files. Flat files are relatively inefficient when
used to access the amount of data with which the sponsor is dealing.
Further, the flat-file paradigm leads to a situation in which the
information cannot easily be accessed for other purposes (such as IP
address-to-customer name lookups). Finally, a solution based on
arpwatch, like that of VLAN implementation, does nothing in the arena of
improving recording keeping by making the allocation of addresses a
technical as well as a recordkeeping process, centralizing the process,
and making it more likely that both tasks will be completed.

An ideal solution for the sponsor will combine a relatively simple and
low-cost implementation, elimination of the ‘two-aspect’ angle of the
allocation process (recordkeeping and technical), and a robust method of
preventing the theft of IP addresses. The next section discusses how,
with a general approach similar to arpwatch, the project will be
implementing the idea in a different fashion and thus overcome these
inadequacies.

1.4.2 The proposed solution

This paper proposes a solution to the sponsor’s problem that will
combine the ‘technical’ and ‘recordkeeping’ aspects of IP address
allocation into a single act. This will reduce (to the point of eliminating)
the egregious errors that lead to permanently lost IP addresses. Rolled
into this solution is an active reconnaissance tool that will periodically
scan all of its assigned IP address space searching for anomalies in the

12

responses. A final feature is the ability to use the solution to scan for
problems and immediately use the solution to query for further
information. For example, given an IP address that is reporting an
unauthorized MAC address, the technician could immediately use the
solution to find out what MAC is authorized for that IP address; what
other IP addresses are authorized for that particular MAC; and
ultimately, if desired, all customers involved in the incident.

The central portion of the solution is a program known (for lack of a
better name) as IPManager, or ipman (so as not to confuse things too
much with some of the sponsor’s current solution segments, namely
ipmanage). A small program written in C, ipman has three core
functions: IP querying, IP binding and unbinding, and accessing other
information.

Additional pieces of the solution include two databases. One of these,
ipman_db, has been created expressly for the ipman solution. The
second of these, ipmanage_ipplan, has been in use for years as the core
of the IP address management system. This has been taken from IPplan,
an IP address management system available under the GNU General
Public License at http://sourceforge.net/projects/iptrack.

1.4.2.1 IP querying

This function is really the core solution to what the sponsor saw as its
main problem. The implementation of this function involves ipman
scanning, in turn, each IP address in its list of IP addresses, kept in a
database table. For each address that is marked as one to scan, the
program sends an ARP request packet, to find out what MAC address will
respond as having a given IP address. The session is filtered to capture
only packets with a source IP address of the packet being scanned. If a
packet is received, it is disassembled, and the MAC address of the
respondent recorded. This is repeated five times for each address in the
table. If the MAC address field in all received packets match and agree
with the MAC address that should be responding according to the
database, the next address is scanned. If the MAC address fields of all
packets do not agree, or there is disagreement with the value in the
database, then an IP-MAC mismatch will be reported for that IP address.
If no responses are received for a given IP address, that address is
written to a table of ‘non-responders’, which are scanned in the next two
passes. Finally, a table containing IP addresses recently allocated to
customers that have never responded to a scan is scanned and
appropriate action taken.

13

1.4.2.2 IP binding and unbinding

At the heart of the entire system lies the server that actually runs ipman,
known as the IP host server. On top of having ipman and the associated
ipman_db database installed, the IP host server has all unallocated IP
addresses bound to its adapter.

The process of allocating an IP address to a customer, then, consists of a
technician unbinding the address from the IP host server. Before the IP
address is actually unbound, ipman checks to see if is already unbound
(and therefore, officially allocated to a customer or to internal usage). If
it is not, ipman prompts the technician for information; to which server
the IP address is being released, the server’s location, and so on. Once
all necessary information is obtained and everything checks out, ipman
will unbind the address from the IP host server’s adapter, and record the
address as an unbound address.

The reverse process takes place when an address is being reclaimed from
a customer. A technician will run ipman and have it bind an address to
the IP host server. Again, ipman checks to ensure that the address is
not already bound. If it is not, ipman performs a look-up to see to which
server it is currently assigned. The technician is prompted for
confirmation that the address currently assigned to a given server is to
be unassigned and bound to the IP host server. Once confirmation is
received, ipman updates necessary database tables and binds the IP
address to the IP host server’s adapter.

1.4.2.3 Accessing other information

This functionality is wide open, and can encompass as much as the
sponsor (or any other user) would desire. The ability to query an IP
address is already built in to ipman. With structures already imbued
within the program, it is possible to extract a great deal of information.
For example, given an IP-MAC address mismatch, a query of ipmanage
on the IP address can yield the server label; given a MAC address, a
query on ipman’s native database can yield all IP addresses authorized to
that MAC. In short, given either an IP address or a MAC address, the
access provided by the functionality within the program leaves very little
information that cannot be extracted from within the ipman
environment.

1.4.3 Benefits of the proposed solution

The proposed solution has a number of advantages over the alternatives
considered. It is relatively simple and inexpensive to implement. While it
does not offer the iron-clad prevention of IP address theft that, for

14

examples, VLANs can assure, it is a robust solution that will always
discover such theft—in acceptably short time, and with minimal effort.

Despite the strengths of any solutions discussed, none of them integrate
the technical and recordkeeping aspects of the IP address allocation
process. Both aspects are critical to IP address management; no other
considered solution covers both.

Further, the proposed solution offers additional information accessibility
within the same environment, affording technicians the ability to query
the databases in the solution for a range of information. This
functionality is simply not a part of the design of alternative solutions.

1.5 Conclusion

This chapter has reviewed the current environment for a server solution
provider and discussed some of its issues with IP address management.
It briefly discussed potential solutions for these problems and touched
on their weaknesses. Finally, it outlined the proposed solution and its
potential benefits. In the next chapter, it will review some of the
literature on the various aspects of the alternative solutions, as well as
available literature as it pertains to the design and construction of the
proposed solution.

15

CHAPTER 2

 Review of Literature

2.1 Review of Alternative Solutions

There is not a wealth of published material in refereed materials on the
management of IP address space. The thrust of the review done was on
materials that would explain how to actually design and construct the
solution being implemented for the sponsor. Many sources indicated
that the preferred method of IP address ‘theft’ was the usage of either
VLANs or, where that was not feasible, the employment of a tool such as
arpwatch. A review of the literature on these alternative solutions
follows.

2.1.1 VLANs

The implementation of virtual LANs (VLANs) can prevent users from
using unauthorized IP addresses. VLANs, are essentially logical
collections of end stations that communicate directly without a router
(Syngress Media, 1998, p.393). One of the more popular uses of VLANs
is to enable the grouping of end users without regard to their physically
connection to the network. A user participating in a VLAN can plug into
a separate location and, without further configuration, continue
participation in the same VLAN.

VLANs can be assigned based on port, MAC address, user ID, or network
address (Syngress Media, p. 395). Assignment by port is the most
common method. This is the way VLANs would be assigned in the
sponsor’s environment, where, again, the largest concern is the
prevention of IP address theft. Figure 1 illustrates the VLAN
environment.

In the VLAN environment, each individual server would be allocated its
own subnet, and addresses would be non-portable to other servers.
Each branch switch would be a separate VLAN. If a packet is not bound
to another port on the same branch switch, it gets forwarded to the
aggregate switch. There the packet is tagged based on the port it came in
one with an 802.1q tag (the VLAN ID) (Barnes and Sakandar, 2005, pp.
84-92). The packet would then get trunked to the router.

Trunking is a method of sending packets from multiple VLANs over a
single physical connection. It has the benefit of obviating the need for
multiple physical connections necessary to achieve the same effect
without trunking. In a sense, trunking can be viewed as form of

16

multiplexing similar to multiple broadcast signals being multiplexed onto
the public airwaves (Barnes and Sakandar, p.88). Because both the
switch and the router are using a trunking protocol, they can use these
connections to send trunking information and, therefore, information for
multiple VLANs over the same wire.

Figure 1. A VLAN implementation.

Once the packet is trunked to the router, the tag with the VLAN ID is
removed and examined. (Barnes and Sakandar, 2005, pp. 84-92) At the
router level, the gateway address of each address allocation has been
‘authorized’ for each VLAN. If the ID in the 802.1q tag does not match
the authorized VLAN, the packet is ignored. In this environment, ‘stolen’
IP addresses will not work outside of the branch switch, as the packets
would be stopped at the router.

As an example, assume Host 1 in Figure 1 is allocated the IP address
block 64.38.0.4/29. The gateway address 64.38.0.5, 64.38.0.6 is the
useable address, and 64.38.0.7 is the broadcast address. A subinterface
on the router has the gateway address 64.38.0.5 bound to it, and it is
tagged with the VLAN ID 5. Assume now that Host 3 binds that address
to its adapter and tries to use it. When it sends a packet to a host not on
the same branch switch, the packet gets forwarded to the aggregate
switch. There it is tagged (as all packets coming to that port) with the
VLAN ID 6, and the packet is trunked to the router. The router reads the

17

ID, sees that VLAN 6 is not authorized to use gateway address 64.38.0.5,
and ignores the packet.

An added benefit to the VLAN approach is without VLAN implementation,
all hosts on all branch switches are in one large broadcast domain: All
hosts receive all broadcasts. A VLAN is a single broadcast domain—no
broadcast traffic will pass to other VLANs, since VLAN-to-VLAN traffic
must pass through the router. Thus, implementing one VLAN per
branch switch means that the sponsor’s environment has moved from
one broadcast domain at the aggregate switch to one broadcast domain
per branch switch. This would provide a marked improvement in the
traffic on the network.

2.1.2 Arpwatch and similar programs

While any documentation on this tool is rare and there is little more to be
found than the man pages, a look at the code (this code from version
2.1a13) indicates that, in normal mode, the tool runs as a daemon,
judging from lines 232 to 250 of arpwatch.c:

if (!debug) {
 pid = fork();
 if (pid < 0) {
 syslog(LOG_ERR, "main fork(): %m");
 exit(1);
 } else if (pid != 0)
 exit(0);
 (void)close(fileno(stdin));
 (void)close(fileno(stdout));
 (void)close(fileno(stderr));
#ifdef TIOCNOTTY
 fd = open("/dev/tty", O_RDWR);
 if (fd >= 0) {
 (void)ioctl(fd, TIOCNOTTY, 0);
 (void)close(fd);
 }
#else
 (void) setsid();
#endif

Based on the excellent explanation by Schiffman (2003, p. 14) of the
libpcap packet-capture library, Line 272 opens a libpcap packet-capture
session in which the host’s adapter is set to promiscuous mode:

pd = pcap_open_live(interface, snaplen, 1, timeout, errbuf);

Finally, after setting some signals, the program enters a packet-capture
loop on lines 334 or 338 (depending on the link type found for the
packet-capture session):

18

status = pcap_loop(pd, 0, process_ether, NULL);

or

status = pcap_loop(pd, 0, process_fddi, NULL);

From an examination of the code and the information in the man pages,
arpwatch passively watches for ARP traffic on the network segment.
Certain events are considered significant and will trigger an email to an
address supplied as an argument: The first occurrence of a MAC on the
network; a change in the IP-MAC pairing recorded; a flip-flop (i.e.,
reversion to a just-previously-used MAC address); and the reappearance
of a MAC after 6 months of dormancy are some of those events.

2.2 Review of the Proposed Solution

The heart of the current solution relies on the notion of being able to
identify a machine using a given IP address. The sponsor’s entire
installed base is connected via Ethernet and uses TCP/IP as its sole
communication protocol. Thus, the decision was made to use the
Address Resolution Protocol (ARP) to determine the media access control
(MAC) address of the machine using a given IP address.

2.2.1 Address Resolution Protocol

ARP was initially proposed in 1982, in RFC 826 by David C. Plummer.
The motivation behind proposing ARP was the expanding usage of
Ethernet as a transmission medium and the greater number of
manufacturers supplying interfaces for the increasingly popular Ethernet
standard. Given that higher-level protocols were independent of the
physical transmission medium, some form of translating the high-level
addresses to the low-level, physical address was needed. Plummer’s
observation was that, as more software was being written for Ethernet
interfaces, the implementers could either all create their own version of
address resolution, or they could all use a standard (Plummer, 1982).
The purpose of RFC 826 was to create that standard.

Given the motivation, it is hardly surprising that the RFC does not
actually discuss implementation. This has been left largely to the
implementers. The only real discussion of the implementation details is
the usage of fields in Ethernet packets to incorporate ARP into Ethernet
functionality, as well as a general algorithm of how ARP might be
implemented. A review of the structures involved in ARP follows.

19

2.2.2 Ethernet frames

As a brief review, an Ethernet frame has the following structure (Kurose
and Ross, 2003, p.456):

Figure 2. Ethernet frame.

The preamble is a field that simply serves to ‘wake up’ the receiving host
and synchronize the transmission rates. The destination and source
address fields contain the Ethernet (MAC) addresses of the hosts involved
in the exchange. The type field allows Ethernet to carry data for a variety
of network protocols. This field contains a code indicating that the
higher-level protocol is IP, IPX, AppleTalk, or any number of other
protocols. It will be sseen shortly how this value will be set to indicate
that the protocol is ARP when packets are sent, and later, examine this
field to determine whether a captured packet is an ARP packet. The data
field contains the actual payload for which the Ethernet frame is being
constructed. The final field, the CRC, is a 4-byte checksum used to
determine whether the data has been corrupted during transmission.

It is the data field of the Ethernet into which the data discussed the next
section, the ARP packet, will be packed.

2.2.3 ARP packets

The structure of an ARP packet is as follows (Plummer, 1982):

Figure 3. ARP packet

These fields are, for the most part, self-explanatory. The hardware
address type in all examples will be Ethernet. ARP was originally
proposed as a general solution for resolving high-level protocol addresses
to physical addresses, so one could include in this field some other
physical address type, such as Packet Radio Network. The protocol
address type field specifies exactly that; in the present program it will
contain IP, although other protocols are possible here as well in other
applications. The next two fields contain the length in bytes of the
hardware and protocol addresses. The next field contains the operation

20

code. This will be, for present purposes, a code that indicates the ARP
packet is either an ARP request or an ARP reply.

The sixth and eighth fields contain the hardware addresses of the sender
and receiver respectively. These fields are the same length as the value
contained in the third field, the hardware address length. The seventh
and ninth fields are the source and destination protocol addresses, with
field size equal to the value of the fourth field, the protocol address
length. For present purposes, the hardware address is the MAC address,
and the protocol address is the IP address.

2.2.4 Packet injection

In order to query an IP address for the host’s MAC address, an ARP
request packet must be built with proper values and put on the wire.
Then the program must capture the reply packets, and extract the
necessary information from them.

Packet assembly at the lowest level can be a difficult, tedious, and error-
prone process. Fortunately, there are libraries available to assist the
application programmer in packet assembly and injection. One such
library is libnet, an open-source project providing a C API to create
packets and write them to the wire. Libnet is distributed under the BSD
license. This library is available for download at the URL
http://www.packetfactory.net/libnet/. The program will use this library
to create an ARP request packet, which will broadcast a request to reply
to the sender with the MAC address of the holder of the IP address the
program is scanning.

The actual process of building the ARP request packet consists of, first,
declaring a pointer to type libnet_t. libent_t is a typedef of the
libnet_context structure. This structure is libnet’s “main monolithic
control data structure that describes a complete libnet packet
shaping/injection session” (Schiffman, 2003, p. 40).

Generically, a packet creation and injection session would follow the
general steps laid out here. First, the program creates a libnet session,
and gets the IP addresses (source and destination) stored in the proper
variables.

libnet_t *context;
char dest_mac[ETH_ALEN]={ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
char src_mac[ETH_ALEN];
struct libnet_ether_addr *ptr_hwaddr;

context=libnet_init(LIBNET_LINK,"eth0",libnet_error_buf);
temp_ip = libnet_name2addr4(context, str_ip, LIBNET_DONT_RESOLVE);

21

memcpy(src_ip, (char *) &temp_ip, IP_ALEN);
temp_ip = libnet_name2addr4(context, ip_addr, LIBNET_DONT_RESOLVE);
memcpy(dest_ip, (char *) &temp_ip, IP_ALEN);
// get the source MAC address
ptr_hwaddr = libnet_get_hwaddr(context);
memcpy(src_mac, ptr_hwaddr, ETH_ALEN);

With the session created and the variables defined, it is time to create the
packet to send.

arp = libnet_build_arp(
 ARPHRD_ETHER, // Hardware address type
 ETHERTYPE_IP, // Protocol address type
 ETH_ALEN, // Hardware address length
 IP_ALEN, // Protocol address length
 ARPOP_REQUEST, // Operation code
 src_mac, // Sender hardware address
 (u_int8_t *)src_ip, // Sender protocol address
 dest_mac, // Target hardware address
 (u_int8_t *)dest_ip, // Target protocol address
 NULL, // Payload -- none in this case
 0, // Size of the payload -- size of nothing
 context,
 0); // This last argument explained below

Compare this to the ARP packet depicted in Figure 3 on Page 20. We are
filling in the ARP packet’s fields, in order, with constants defined in
libnet and values assigned earlier. The last argument is of type
libnet_ptag_t. This is a protocol tag identifier. All libnet packet building
functions return this data type, and all accept it as an argument. To
change something slightly in this header (or in the data, if there were
any), one could pass arp (declared as static libnet_ptag_t so it will be
available next time around, if need be) as the final argument after
modifying whatever needed modification. Since it is not necessary to
modify packet parameters, 0 is passed for this last argument.

With the ARP packet assembled, the program now builds the Ethernet
frame.

eth = libnet_build_ethernet(
 dest_mac,
 src_mac,
 ETHERTYPE_ARP,
 NULL,
 0,
 context,
 0);

Again, the correspondence to the depiction of an Ethernet frame in
Figure 2, Page 20, is almost one-to-one. The preamble is taken care of by
the libnet library, as is the CRC at the end of the packet. The data, here

22

the NULL argument, is actually the ARP packet just built above. The last
three arguments are analogous to those in constructing the ARP packet.

Finally, the program writes the packet to the wire and cleans up the
session:

libnet_write(context);
libnet_destroy(context);

2.2.5 Packet capture

Packet capture and disassembly can be just as difficult and error-prone
as packet creation and injection. An analogous library, libpcap, offers an
API to the application programmer and is included in most Linux
distributions. The program employs libpcap to capture packets, filters
them so examines only those that are of interest, and then disassembles
them to extract the MAC address of the respondent.

The program first opens a pcap capture session as it did with libnet
packet creation. pkt_descriptor is analogous to the libnet_t structure; it
is the structure that contains all the necessary information for a packet-
capture session. The variable filter allows us to set a filter on the
packets that will actually be captured. In the present case, they need to
be ARP packets, and the source host must be from the IP address in
ip_addr. pcap_compile processes the filter and prepares it for employment.
Finally, pcap_setfilter sets the filter on the session.

pcap_t *pkt_descriptor; // like a file descriptor for packets
struct bpf_program prog_buff; // space for compiled filter
char *filter; // the filter to pick out only
 // interesting packets
char error_buf[PCAP_ERRBUF_SIZE];
const u_char *packet;
int MAX_SIZE_FILTER = strlen("arp src host ") + MAX_SIZE_IPADDR + 1;

pkt_descriptor = pcap_open_live(interface, BUFSIZ, 0, 500, error_buf);

In the following lines, a filter on captured packets is created, compiled
and set in the packet capture session. The filter implements the Berkley
Packet Filter (BFP) filter programs (Schiffman, 2005, p. 18). The filter is
compiled into the area allotted to it in prog_buff and then set in the
session.

sprintf(filter, "arp src host %s", ip_addr);
pcap_compile(pkt_descriptor, &prog_buff, filter, 1, 0);
pcap_setfilter(pkt_descriptor, &prog_buff);

23

Finally, the packet capture session is initiated with a call to
pcap_dispatch. This function takes as arguments the session structure;
the number of packets to capture (0 indicates that it should keep
capturing); a callback function that is called to handle each packet; and
finally a pointer to u_char. This argument is actually passed by
pcap_dispatch to the callback function specified by the previous
argument.

pcap_dispatch(pkt_descriptor, 0, (void *)pcap_callback_fct, NULL);

The callback function is used to process the packets. This can really be
whatever the application programmer needs. The callback function
receives as arguments the user-defined pointer to u_char describe above,
as well as pointers to the pcap_t structure and the captured packet. We
will discuss the callback function later, as it is an implementation detail.

2.2.6 Database access

The MySQL database server is ubiquitous in the sponsor’s environment,
as well as being one of the most widely-implemented open-source
database platforms in the world. The MySQL implementation of an API
for C is quite simple to use. There are essentially four steps to running a
query on a MySQL database from within a C program (MySQL AB, 2004).
First, a session is initiated. Secondly, a connection is made to the server.
The next step is to construct and execute the query. Finally, the session
is ended by destroying the resources allocated to the session.

As in the previous libraries, the API for MySQL contains one monolithic
structure that is the repository for all the major data and components of
a MySQL session. This is the MYSQL structure, and it represents a
handle to a database connection (MySQL AB, 2004, p. 777). It is used is
almost every function in the mysqlclient library. Another very common
structure in MySQL sessions is the MYSQL_RES structure. This represents
the result set of a query that returns rows (for example, SELECT or
DESCRIBE). Below is an example of a short MySQL session that returns
one row and prints the results. Memory allocation and error checking,
while essential, have been omitted for brevity.

MYSQL conn;
MYSQL_RES *res;
MYSQL_ROW row;
char *server = "localhost";
char *mysqlUser = "my_user";
char *mysqlPass = "my_pass";
char *mysqlDB = "my_database";
char *mysqlQuery;

24

mysql_init(&conn);
mysql_real_connect(&conn, server, mysqlUser,
 mysqlPass, mysqlDB, 0, NULL, 0);
sprintf(mysqlQuery, “SELECT field2, field3 FROM table1”);
mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));

These are the first three steps mentioned. The following four lines are
not discussed above. These lines handle the returned information.
There are clearly as many variations on this type of code as there are
queries and users. What follows is just a very simple sample.

res = mysql_use_result(&conn);
row = mysql_fetch_row(res);
printf(“field1 = %s\n”, row[0]);
printf(“field2 = %s\n”, row[1]);

mysql_free_result(res);
mysql_close(&conn);

2.2.7 Final considerations

An attempt has been made in this project to follow the best programming
practices—although, due to lack of experience, this is not always
apparent.

Whenever possible, local variables have been used, rather than external
variables. The usage of external variables is “fraught with
peril...[external] variables can be changed in unexpected and even
inadvertent ways.” (Kernighan and Ritchie, 1988, p. 34). A couple of
external variables, as exceptions to this rule, have been employed, but
for good reason. Further, the small number of external variables—and
the prominence of the information they store—make “inadvertent”
changes very unlikely.

The program has been broken down into functions whenever this was
determined to be a real possibility. In general, an attempt has been
made to strike a balance between code readability, ease of making
changes to the program, and performance. Large numbers of function
calls can have a negative impact on a program’s performance (Deitel and
Deitel, 2003, p.208). However, a large number of small, concise
functions aid in program maintenance, debugging, and readability. In
the present case, both of these considerations carries equal weight, and
the functionalizing of the solution should be evaluated accordingly.

2.3 Conclusion

This chapter briefly reviewed the literature on some alternative solutions
to the sponsor’s problem. It discussed how VLANs work to prevent IP
address misallocation as well as bringing other benefits. The chapter

25

then reviewed available materials on arpwatch, a passive tool that
watches for certain predefined key events to occur. Finally, some of the
literature was reviewed which contained insight into designing and
constructing the proposed solution. The next chapter discusses that
design.

26

CHAPTER 3

 Analysis and Design

3.1 Overview

The current solution has two major goals. The first of these, and the one
which the sponsor considered to be the main goal of the project, is a
system that will periodically scan for unauthorized usage of IP addresses.
‘Unauthorized usage’ in this context means that an IP address is bound
to a server to which that IP address was not allocated.

The second is to consolidate the two aspects of IP address management—
the technical aspect, and the recordkeeping aspect. The sponsor’s
technical staff members are much better at carrying out whatever
technical challenges face them than they are at keeping good records.
This was a major finding of the analysis of the current environment—that
many of the issues associated with address management stem from a
failure to carry through on the ‘clerical’ aspects of things.

With these two goals in mind, the design of the project became fairly
clear. The sponsor needed a solution that could combine and centralize,
to the extent possible, all functions associated with IP address
management. The review of the environment made it clear that there are
three functions involved in IP address management. Those functions are
allocation to the customer, reclaiming from the customer, and auditing
the usage of all addresses, whether allocated or not.

The centralization of these three functions necessitated a specialized
database to help maintain the records needed. Auditing the usage of IP
addresses, allocated or not, implies keeping records of not only to whom
addresses are allocated; it is also necessary to keep track of which
addresses are not allocated, and to make sure that those are not used.

Indeed, the sponsor already has deployed a database that is used to
track IP allocation. The database is ipmanage_ipplan, and is derived
largely (if not entirely) from an open source project called IPplan. IPplan
is an IP address management system available under the GNU General
Public License at http://sourceforge.net/projects/iptrack. This database
uses one table to track allocated IP addresses. The usage of this table is
telling: When an IP address is allocated, a record is inserted into the
table for it, and when the address is reclaimed, the record is deleted:
There is no way to track unallocated addresses within this schema.

27

This database is, all the same, central to the sponsor’s tracking of IP
address allocation, and therefore—for the near future, at any rate—the
database needs to remain part of the solution. A brief description of the
tables that touch on the present solution, then, is in order.

The main table that concerns us is ipaddr, described below:

+-----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+-------+
ipaddr	int(11) unsigned		PRI	0	
userinf	varchar(80)				
location	varchar(80)				
telno	varchar(15)				
descrip	varchar(80)				
baseindex	int(11)		PRI	0	
lastmod	timestamp(14)	YES		NULL	
userid	varchar(40)				
+-----------+------------------+------+-----+---------+-------+

The field ipaddr is an integer representation of an IP address. userinf is a
field that represents a description of the ‘user’ to whom the address is
assigned. The sponsor uses this for the label put on the server when it is
racked, which sometimes serves as a key. The location field identifies
the datacenter and rack in which the server is located. The field descrip
is a generic field for further information—the sponsor uses it to describe
the relation of the assignee to the organization. Examples of data in this
field include ‘Dedicated server’, ‘Co-location’, ‘Internal’, and ‘Assigned to
(staff member)—testing’. The field baseindex serves as a tie-in to the table
base; in a current and properly designed database, this would actually be
a foreign key referencing the primary key baseindex in the table base.
The field lastmod is a timestamp that is updated by the MySQL engine
each time there is an INSERT or UPDATE performed on the row. userid
is the login name of the staff member that last updated the row (via
INSERT or UPDATE).

The table base has little real impact on the present project. Essentially,
each entry in the table represents an IP address net block allocation to
the sponsor from the upstream provider. Almost all of these are C-class
address blocks. There are a handful of allocations that are not C-class
blocks, but these are considered legacy. As they are already permanently
allocated to internal devices, they do not concern this project. The table
base will only be used when an additional C-class address is allocated to
the sponsor. In this event, the address block needs to be provisioned on
the IP host server and added to the ipmanage_ipplan database. We will
touch on the specifics of adding address blocks later.

28

Central to the workings of the current solution is the database
ipman_db. While ipman does interact with ipmanage_ipplan, ipman_db
is the core data store for the solution. Therefore, an understanding of
the structure of ipman_db is indispensable to understanding the design
of the program itself.

Figure 4. Entity relationship diagram for ipman_db.

The central table is ips_and_macs. This table contains each IP address in
the IP host server’s broadcast domain. The address is stored as an
unsigned integer in the field ip_addr. The field mac_addr holds the MAC
address of the IP address once it is known; when an IP address is first
added to the database, the MAC address may not be known. This is the
case, for example, when the entire system is first being initialized. The
final field, scan, is essentially a Boolean representation of whether the IP
address ought to be scanned.

The table no_response is used as a sort of temporary table during a scan
to track which IP addresses did not responded during the previous pass.
The fields are self-explanatory.

The table unbound_ips contains IP addresses that have recently been
allocated to a customer, but have not yet responded to an ARP query
since being unbound from the IP host server. The primary key ip_addr is,
of course, the address as an unsigned integer. The field released_to
contains information on the individual using the IP address. Under all
but the most unusual circumstances, this would be the server label, the
same information that is stored in the ipaddr table’s userinf field in the
ipmanage_ipplan database.

29

The final table contains information on the users of the system. The field
staff_id serves as the primary key. staff_name is used as the username,
and staff_password stores the user’s password as an MD5 hash. Finally,
userlevel can be used as a value to limit access to certain functions, as
the administrators of the system choose.

An overview of the entire system is provided in the context diagram
below.

Figure 5. IP address management system context diagram.

The bulk of communication occurs between the technical staff and the IP
management system. The technical staff will periodically request IP-MAC
address mismatches, as well ‘non-responders’—addresses that do not
elicit a reply to an ARP request. In response to this request, the IP
management system sends ARP requests to all the IP addresses in its
ips_and_macs table, provided that the value of the scan field for a given
address indicates it ought to be scanned. After a number of passes, the
IP management system reports to the technical staff the IP addresses
elicited a reply from an unauthorized MAC address as well as those
which elicited no response at all.

Additionally, the technical staff can request that the system bind an
address to the IP host server. This will be done when reclaiming an IP
address that was allocated to a customer but is being returned. In a

30

similar fashion, the technical staff can request that the system unbind
an address from the IP host server. This will be done when allocating an
IP address to a customer.

As Figure 5 shows, administrators have their own unique requests to
make to the system. Generally, it would be an administrative task to
enter new addresses into the system in the event that the sponsor
received a new address block allocation from the upstream provider.
This is indicated in Figure 5 with the administrators communicating IP
address blocks to the system. Also, the system is designed in such a
fashion that it would be very simple to add a function to the program to
add additional users to the system. It would be equally simple to add a
function that allows an administrator to remove an IP address from the
normal scan. This might be done if the administrator knew that the IP
address would be assigned to a ‘non-responder’ for a time, or to remove it
from normal scanning procedures for some other reason.

From the context diagram, it is apparent that there are three central
functions to the IP management system: IP address binding; IP address
unbinding; and IP address querying. The design of each of these
functions will be clarified in the following sections.

3.2 Binding IP Addresses

The sponsor has found that the addresses most susceptible to ‘theft’ are
those in its address space, but not bound to any interface. To reduce the
window of opportunity for theft, then, includes minimizing the amount of
time an address is unbound. This observation lead to two design
decisions. The first is that all addresses not allocated to a customer
should be bound to the IP host server. The second design decision is
that addresses allocated to customers need to be tracked as ‘unbound’
until they respond to an ARP request. Thus, the process of reclaiming an
IP address from a customer involves binding it to the IP host server’s
interface and adjusting the system records to indicate its new status as
an unallocated address.

Thus, the process of binding an IP address to the IP host server is
invoked when an IP address needs to be reclaimed from a customer.
This situation normally comes about when a server is cancelled and all
its addresses are returned to the pool of addresses available for
assignment to a customer. Occasionally a situation occurs when a
customer no longer has use for an address that was previously allocated
to him.

31

The process of binding an IP address through the IP address
management system is straightforward. It is depicted in the data flow
diagram below.

Figure 6. IP address binding data flow diagram.

Briefly, a member of the technical staff issues the command to the
system to bind an IP address. The system checks that IP address is not
already bound to the IP host server; if it is, the system informs the staff
member and exits. Otherwise, the system looks up the address record in
the ipmanage_ipplan database’s ipaddr table. If the record exists, the
staff is asked whether to really reclaim the IP address from the server in
the record. If the staff member indicates to do so, the system performs
the following steps:

- deletes the record from ipmanage_ipplan’s ipaddr table;
- updates the address’s record in ipman_db’s ips_and_macs table,

setting the scan field to true and the mac_addr field to the MAC
address of the IP host server, and finally deleting any record for
the address that might be in unbound_ips (in the unlikely event
that one would exist);

- adds the IP address to a text file on the IP host server (/etc/ips)
which lists all the IP addresses bound to the server;

- makes system calls on the IP host server to shut down and then
bring up the network interface, reloading the IP addresses listed
in /etc/ips.

The system call that reloads the IP address in /etc/ips is to execute a
script commonly used by the sponsor to simplify IP aliasing; it is not
written by the author.

32

3.3 Unbinding IP Addresses

IP address unbinding occurs in the opposite situation; namely, a
customer requests an additional IP address. This entails the process
illustrated in the following figure and described below.

Figure 7. IP address unbinding data flow diagram.

The flow of data in this process is similar to the flow of data in the
binding process, with one difference—the flow to the unbound_ips table. A
member of the technical staff issues the command to the system to
unbind an IP address from the IP host server. The system first checks to
see if the address is already unbound; if it is, the staff member is notified
and the program exits. Otherwise, the staff member is prompted for
information about the server to which the address is being assigned.
This information includes the server label, the datacenter and cabinet
where the server is racked, and the type of server (dedicated, co-located,
etc.). The input is echoed to the staff member for confirmation. If it is
confirmed, the system performs the following actions:

- adds a record for the address to ipmanage_ipplan’s ipaddr table;
- updates the address’s record in ipman_db’s ips_and_macs table

by setting the scan field to false;
- adds a record to the unbound_ips table for the address, noting

the staff ID for the staff member issuing the unbind command
and the date and time the command was issued;

- deletes the IP address from the /etc/ips text file;
- makes system calls on the IP host server to shut down and then

bring up the network interface, reloading the IP addresses still
listed in /etc/ips.

33

At the end of the process, the table ips_and_macs has the IP address’s
record with with the IP host server’s MAC address in the mac_addr field,
the scan field set to false, and a record for the address in the table
unbound_ips. The design decision to minimize the time that an IP address
is unbound necessitated the inclusion of the table unbound_ips. We will
see in the next section the reasoning behind the table and the role it
plays in the IP querying process.

3.4 Querying IP Addresses

The process of going through all the IP addresses in one of the sponsor’s
broadcast domains, sending ARP requests to each to determine the MAC
address on the interface to which the addresses are bound, analyzing the
results, and reporting key events is the heart of the IP address
management system. This is technically the most challenging part of the
project, and its design the most involved. An overview of the process is
illustrated in its top-level data flow diagram below.

Figure 8. IP querying top-level data flow diagram.

The technical staff issues the command to start the scan. This could
either be directly from the command line, or (as will more frequently be
the case), indirectly by scheduling scans to run regularly as cron jobs.

The command invokes the program ipman, which starts by reading all
the IP addresses from the ipman_db table ips_and_macs where the scan
field is set to true. Ipman will then go through the list one address at a
time. For each address, ipman will send ARP request packets asking for
the IP address of the holder of the address being queried. It then
captures packets, filtering specifically for ARP packets where the source
host is the IP address being queried. When packets are received, it

34

makes sure that all of the responses match each as well as the mac_addr
field in ips_and_macs. If they do not match each other as well as the
mac_addr field, the IP address is reported as stolen at the end of the scan.
However, the description of the top-level data flow diagram actually hides
a great deal of the process involved in IP address querying. The scan
actually consists of three passes. The first pass is illustrated in the
second-level data flow diagram. It proceeds as described in the previous

Figure 9. IP address querying second-level data flow diagram—first pass.

paragraph, with the exception that addresses that do not elicit a
response have a record added to the table no_response which includes the
address, the pass, and a timestamp. At the end of the first pass, ipman
optionally sleeps for a short period of time, and then begins the second
pass. The second pass is illustrated in the second-level data flow
diagram in Figure 10.

The major difference between the first pass and the second and third
passes is that while the first pass queries addresses in ips_and_macs, the
second and third passes query only addresses that are in no_response.
The program gets a list of all the addresses in the table and queries them
as in the first pass. If a response is elicited on this pass, the record for

35

the address is deleted from no_response and the reply is analyzed as in
the first pass.

Figure 10. IP address querying second-level data flow diagram—second pass.

The third pass is virtually identical to the second pass; in the interests of
brevity, the second-level data flow diagram illustrating it will not be
included here.

With the three passes completed, the scan process finishes up with some
recordkeeping activities. The remaining IP addresses in no_response are
noted in the report log and then the records are deleted. The IP
addresses in unbound_ips are scanned in a fashion similar to the first pass
above. If a response is received, the record in ips_and_macs for the
address is updated—the mac_addr field is updated with the MAC address
received in the response, and scan is set to true—the record is deleted
from unbound_ips, and the address is written to the report as getting a
first response since being allocated to the customer.

36

3.5 Conclusion

This chapter covered the basic design of the proposed solution. It briefly
explained the reasoning for the design’s three central functions, and
provided an overview of the processes involved in those functions. The
next chapter will show how these processes are implemented as the
construction of the system is discussed.

37

CHAPTER 4

 Construction

4.1 Overview

This chapter discusses the actual implementation of the project. It
begins with a very brief discussion of the resources to build the project
and the factors upon which it relies, and then turns to some of the more
salient points of the implementation. Emphasis is placed on those
portions of the solution that are central to its functioning—such as the
actual code for the functions involved in IP address querying, binding,
and unbinding.

4.2 Resources

The project construction work was carried out on two servers. The first
of these was a low-end PC on the author’s home network. This machine
is running Red Hat Linux 9 with the 2.4.20-37.9 kernel for an operating
system. The code was written using vi (VIM 6.1.320), and compiled
using the GNU C Compiler (gcc 3.2.2). The ipman_db database was
created on this server, using MySQL server version 4.0.20-standard.

The basic structure of the program was created on this server—most of
the functions that could be tested in any environment were created here.
The main method was created on this machine, along with almost all
other functions. Very few functions were initially written on the testing
server, although a few were as it became clear during the testing phase
that more work was needed.

Development continued in this environment until it was necessary to
move the project to an environment more suitable for testing. The
testing server also belongs to the author, but is racked at the sponsor’s
datacenter. This server is running CentOS 3.5 with the 2.4.21-32.0.1.EL
kernel for an operating system. Code written on this machine also
employed vi (VIM 6.3.81), and was compiled using gcc version 3.2.3. The
databases were moved to MySQL server version 4.0.25-standard.

4.3 IP Address Querying

The basics of querying an IP address involve building an ARP request
packet, putting it on the wire, and then capturing responses (if any) and
storing the response’s source protocol address for comparison with the
information stored in the database.

38

The entire process of build and sending ARP request packets, capturing
replies, and storing the results is performed in the ipman function
get_mac. This function is defined as follows:

void get_mac(char *ip_addr)

get_mac actually stores the retrieved MAC address in an array of
character strings, since multiple functions need to have access to the
extracted information. Thus, there is no return type. get_mac takes one
argument, which is the IP address for which the MAC address is being
requested.

The actual process of building the ARP request packet consists of, first,
declaring a pointer to type libnet_t. libent_t is a typedef of the
libnet_context structure. This structure is libnet’s “main monolithic
control data structure that describes a complete libnet packet
shaping/injection session” (Schiffman, 2003, p. 40).

In get_mac, the program declares the pointer to libnet_t as context, and a
few other variables, the most important of which are included below:

libnet_t *context;

//The following holds the integer version of the IP address
u_int32_t temp_ip = 0;
struct libnet_ether_addr *ptr_hwaddr;
char src_ip[IP_ALEN], dest_ip[IP_ALEN];

// We don't know the destination MAC address, so need to broadcast.
char dest_mac[ETH_ALEN]={ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
char src_mac[ETH_ALEN];

// Protocol tag
static libnet_ptag_t arp = 0, eth = 0;

With the variables defined, the program initializes some values. First, it
will create the libnet session by calling libnet_init with parameters that
specify the injection type (it uses the constant LIBNET_LINK to specify
link-layer injection), the device over which the packets will be sent, and a
buffer to which libnet can write errors if necessary.

//build the ARP request packet

// create the libnet session handle
if((context=libnet_init(LIBNET_LINK,"eth0",libnet_error_buf))==NULL) {
 printf("libnet_init(): %s", libnet_error_buf);
}

Next, it assigns values to the source and destination IP variables. Note
that once the libnet_t structure has been initialized with libnet_init, a

39

pointer to it is passed to all libnet function calls. Even when not strictly
required otherwise, the functions need to have the libnet_t pointer
passed to them because any error messages will be stored within this
structure. Below, the program gets the integer values of the IP
addresses’ dotted decimal formats and stores them in the src_ip and
dest_ip character arrays.

// pack the source and destination IPs—the source IP address is
// hard-coded, which needs to be changed
temp_ip = libnet_name2addr4(context, "147.202.49.28",
 LIBNET_DONT_RESOLVE);
memcpy(src_ip, (char *) &temp_ip, IP_ALEN);
temp_ip = libnet_name2addr4(context, ip_addr, LIBNET_DONT_RESOLVE);
memcpy(dest_ip, (char *) &temp_ip, IP_ALEN);

Now that all necessary variables are initialized, it is time to build the
packet. The program will start at the top of the OSI stack and build the
ARP packet first.

//build the ARP request packet
arp = libnet_build_arp(
 ARPHRD_ETHER, // Hardware address type
 ETHERTYPE_IP, // Protocol address type
 ETH_ALEN, // Hardware address length
 IP_ALEN, // Protocol address length
 ARPOP_REQUEST, // Operation code
 src_mac, // Sender hardware address
 (u_int8_t *)src_ip, // Sender protocol address
 dest_mac, // Target hardware address
 (u_int8_t *)dest_ip, // Target protocol address
 NULL, // Payload -- none in this case
 0, // Size of the payload -- size of nothing
 context,
 0); // This last argument explained below

Compare this to the ARP packet depicted in Figure 3 on Page 20. The
program is filling in the ARP packet’s fields, in order, with constants
defined in libnet and values that were assigned earlier. The last
argument is of type libnet_ptag_t. This is a protocol tag identifier. All
libnet packet building functions return this data type, and all accept it as
an argument. If one wanted change something slightly in this header (or
in the data, if there were any), one could pass arp (declared as static
libnet_ptag_t so it will be available next time around, if need be) as the
final argument after modifying whatever needed modification. Since the
modification of packet parameters is unnecessary, 0 is passed for this
last argument.

With the ARP packet assembled, the program now builds the Ethernet
frame.

40

eth = libnet_build_ethernet(
 dest_mac,
 src_mac,
 ETHERTYPE_ARP,
 NULL,
 0,
 context,
 0);

Again, the correspondence to the depiction of an Ethernet frame in
Figure 2, Page 20 is almost one-to-one. The preamble is taken care of by
the libnet library, as is the CRC at the end of the packet. The data, here
the NULL argument, is actually the ARP packet that was just built above.
The last three arguments are analogous to those in constructing the ARP
packet.

All is set to write the packet to the wire, but first it is necessary to set
things up to receive the replies. Here the program will employ the
libpcap library, designed to make packet capture as transparent to the
application programmer as libnet makes packet creation.

4.3.1 pcap_open_live

The following code has the error checking code removed to ease
readability. The program first opens a pcap capture session as was done
with libnet packet creation. pkt_descriptor is analogous to the libnet_t
structure; it is the structure that contains all the necessary information
for a packet-capture session. The variable filter allows the program to
set a filter on the packets that are actually worth capturing. In the
present case, they need to be ARP packets, and the source host must be
from the IP address in ip_addr. pcap_compile processes the filter and
prepares it for employment. Finally, pcap_setfilter sets the filter on the
session.

pkt_descriptor = pcap_open_live(interface, BUFSIZ, 0, 500, error_buf);
sprintf(filter, "arp src host %s", ip_addr);
pcap_compile(pkt_descriptor, &prog_buff, filter, 1, 0);
pcap_setfilter(pkt_descriptor, &prog_buff);

With everything set for both packet sending and capture, the program is
almost ready to enter the loop that will send the ARP request five times
and wait for the response. First, it is necessary to deal with a problem
Linux has with pcap_open_live implementation.

4.3.2 Problem with pcap_open_live on Linux

At this point, the project hit a major problem. Taking another look at the
pcap_open_live call, it is apparent that the fourth argument (passed here

41

as the ‘magic number’ 500), represents the read timeout. On different
systems, this has different meanings. The intent is that after waiting
that number of milliseconds for a packet, a read timeout occurs and the
function returns. The read timeout functions this way on some systems.
On other systems, the ‘read timeout’ clock does not start ticking until the
first packet is captured. On Linux systems such as the development and
testing servers, the read timeout is not implemented at all. The end
result is that if no packets are captured that meet the packet filter
constraints, the process will block indefinitely.

The only apparent way around this limitation in Linux was to ensure
that there was an ‘overseeing’ process that prevented the process from
blocking indefinitely. The two methods that are, perhaps, the most
obvious are the implementation of threads, or the forking of child
processes. The decision was made to fork child processes.

4.3.3 Implementation of forking

The idea of forking the child is simple in concept. The child process
would be forked by the parent and begin the packet capture, while the
parent went to sleep for 100 milliseconds. Captured packets would be
disassembled, the MAC address extracted and written to the global array
of character strings, and then the child would exit. If the child had not
filled the array by the time the parent had awoken, the assumption
would be that the child process is blocking indefinitely as it waits to
capture replies from an unbound IP address. Thus, if the array had not
been filled when the parent awoke, it would kill the child process.

The problem with this design should be apparent. Upon forking, the
child is an exact replica of the parent process, with all the same
variables, environment, and so forth. The problem is that these variables
are copies of the parent’s; the child has its own memory space (Robbins,
2004, p. 286). Thus, were the child to write the MAC address from
captured packets to the global array declared for that purpose, it would
be to its own copy of the array; the parent would no longer have any
access to it.

In order to implement the design put forth, it was necessary to
implement some form of interprocess communication (IPC). Of the five
major methods of IPC (shared memory, mapped memory, pipes, FIFOs,
and sockets), the decision was made to implement shared memory—it is
relatively simple and allows for very fast communication between local
processes (Mitchell et al., 2001, p. 96).

The implementation is as simple as promised. Once process allocates a
shared memory segment. Each process that wishes to use it must attach

42

it. When finished, the processes detach the shared segment. Finally,
one process must deallocate it. It seems clear in the present program
that the parent process will allocate the shared memory segment, the
child will attach it and write to it, and the parent will then deallocate it.

First, the program needs to declare some extra variables for the fork and
shared memory implementation.

pid_t child_pid;
char *shared_mem; // This will be shared for getting the MAC into
 // target_mac[]
int shmseg_id;

Next, it allocates the shared memory.

shmseg_id = shmget(IPC_PRIVATE, MAX_SIZE_ETHADDR,
 IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

The first parameter is an integer key indicating which segment to create.
Use of the constant IPC_PRIVATE guarantees that a new segment will be
created which no other process has specified (Mitchell, p. 98). The
second argument is the amount of space to allocate. The third argument
is a bitwise OR of flags specifying more options to shmget. Here it is
specified that a new segment be created; that failure to allocate a unique
segment means that shmget fails; the last two flags specify read and write
permissions for the owner of the segment.

Now, with an overseeing process to make sure that no child blocks
indefinitely and a way for the child to communicate captured MAC
addresses to the parent through IPC, the program is ready to enter the
loop that will send the ARP request five times and wait for the response.

4.3.4 Writing the packet and capturing the reply

With all prepared, the program entered a loop that repeats five times. In
each iteration of the loop, the prepared packet is written to the wire, and
the child is forked and listens for the reply. Any captured packet that
makes it through the filter is passed to the pcap callback function,
pcap_callback_fct. That function will be discussed shortly; briefly, it
extracts from the captured packet the source MAC address and stores it
in the global character string variable temp_mac.

for(x = 0; x < 5; x++) {
 t = libnet_write(context);
 if(t == -1) {
 printf("libnet_write error: %s\n", libnet_geterror(
 context));
 }

43

 child_pid = fork();
 if(child_pid == 0) { // this is the child process
 // attach to shared memory
 shared_mem = (char *) shmat(shmseg_id, 0, 0);
 pcap_dispatch(pkt_descriptor, 1,
 (void *)pcap_callback_fct, NULL);
 //convert to upper case
 to_upper(temp_mac);
 memcpy(shared_mem, temp_mac, MAX_SIZE_ETHADDR);
 exit(0);
 }

The call to shmat passes the segment ID to the function for attaching the
shared memory. pcap_dispatch begins the packet capture, and specifies
that the capture will stop once a packet meeting the filter requirements is
captured. At this point, the child process has either performed its task
and exited, or has blocked. If it has blocked, nothing will have been
written to the shared memory, so the program can check the string
length there.

Now the code listing continues with the parent:

 else {
 sleep(.1);
 shared_mem = (char *) shmat(shmseg_id, 0, 0);
 if(strlen(shared_mem) == 0) {
 // the child has blocked, kill it
 kill(child_pid, SIGTERM);
 }
 }
 memcpy(target_mac[x], shared_mem, MAX_SIZE_ETHADDR);
}// end of for(x = 0; x < 5; x++)

Here ends the loop that sends the five ARP requests and captures the
reply, if any. It is necessary to briefly examine the pcap callback
function to see exactly what transpires with the captured packet. The
function is defined as:

void pcap_callback_fct(u_char *what, struct pcap_pkthdr *pkt_header,
 u_char *packet)

The program first defines a structure for the Ethernet header, the ARP
header, and the source MAC address.

struct ether_header *eth_header; // net/ethernet.h
struct ether_arp *arp_header; // linux/if_arp.h
u_char src_ha[19]; //source hardware address

Next, it extracts the Ethernet header from the packet that was passed in
to the function.

44

eth_header = (struct ether_header *) packet;

It then checks to see if it is an ARP packet. If it is not an ARP packet, the
program really should have gotten here, as the filter set in the calling
function specified only ARP packets.

// If it's an ARP packet, get some ARP info from it:
if(ntohs(eth_header->ether_type) == ETHERTYPE_ARP) {

If it is an ARP packet, the program next extracts the ARP header, and
then examines the operation code field. If the op code indicates an ARP
reply, it extracts the hardware (MAC) address from the packet, copies it
into the global character string temp_mac, and returns.

 arp_header=(struct ether_arp *)
 (packet+sizeof(struct ether_header));
 if(arp_header->ea_hdr.ar_op == ntohs(ARPOP_REPLY)) {
 snprintf(src_ha, sizeof(src_ha) - 1,
 "%02x:%02x:%02x:%02x:%02x:%02x:",
 arp_header->arp_sha[0], arp_header->arp_sha[1],
 arp_header->arp_sha[2], arp_header->arp_sha[3],
 arp_header->arp_sha[4], arp_header->arp_sha[5]);

 memcpy(temp_mac, src_ha, 19);
 }
}

Thus, the pcap callback function writes the source MAC address of a
single packet to temp_mac. The child, before exiting, writes the contents of
temp_mac to the shared memory segment for the parent to access.

4.4 IP Address Binding and Unbinding

The binding and unbinding of IP address is much simpler and requires
little explanation. When the binding function is invoked by a user, the
program prompts the user for the dotted-decimal notation of the address
and its subnet mask. The input is passed to the function bindips,
defined in the following manner:

int bindips(const char *addr, char *mask)

bindips first validates that the input is a valid IP address, a valid range of
IP addresses, or a valid C-class. If the input is a single IP address, it
checks to make sure that the IP address is not already bound with a call
to ip_is_bound. If it is not, the function calls query_ipmanage to delete the
IP address record. Next, it updates the ips_and_macs table in the
ipman_db database with calls to add_iphostserver_mac and set_scannable.
The function then adds the address to the list of locally bound address,
/etc/ips. A call to delete_unboundip deletes any potential record for the IP

45

address in the table unbound_ips. A similar process is followed if the
function finds that the user input is a range of IP addresses.

Should the input represent a valid C-class address block, bindips calls
add_new_addr_block, which adds a new base index for the block to the
table base in the database ipmanage_ipplan adds the addresses to the
ipman_db table ips_and_macs with the IP host server’s MAC address in
mac_addr and scan set to true for each record, and then adds the
addresses to /etc/ips.

Finally, the function calls reload_ipaliases, which simply makes a few
simple system calls to dump the current aliased IP addresses and reload
them all, including the recent addition to /etc/ips.

Unbinding IP addresses works in much the same way. The function
responsible is unbindips. A major difference is that unbindips accepts
only a single IP address for unbinding. The removal of a C-class
allocation has never happened with the sponsor. Unbinding a range of IP
addresses has happened, but is quite rare and thus was not
implemented.

4.5 Conclusion

This chapter has shown the specifics of implementing the design covered
in the previous chapter. The construction of the key functions of the
solution was covered, and some of the more esoteric pieces involved in
getting the design to function properly as a whole were discussed. The
next chapter will evaluate the solution’s strengths and weaknesses.

46

CHAPTER 5

 Findings

5.1 Overview

This chapter discusses the actual implementation of the project. It
begins with a brief discussion of the functionality ultimately offered by
the solution, and the extent to which the users considered it an
improvement over the previous system. It concludes with a discussion of
the solution’s performance in the sponsor’s environment.

5.2 Functionality

5.2.1 IP address unbinding

As may be recalled from the initial discussion of the environment in
Chapter 1, the technical staff members went through a series of steps to
allocate an IP address to a customer. First, a web interface into
ipmanage_ipplan was consulted to determine addresses allegedly free for
customer allocation. Next, an internal server was used to arping the
address to ensure that, regardless of what the records indicated, it was
in fact free. Finally, the web interface was used again—clicking the IP
address brought up an HTML form in which the needed information was
supplied.

The implementation of the solution has not done anything to simplify
this process for the members of the technical staff. It is still necessary
for them to consult the web interface to determine which IP addresses
are allegedly free. At that point, they log in to the IP host server to arping
the free address. They then execute the command ‘ipman –u’ and are
prompted for the IP address to allocate and the same information as
previously entered in the HTML form. The technicians were unanimous
in agreeing that the new solution did not make allocating addresses to
customers easier.

In fact, in some situations allocation to customers was made more
difficult. Specifically, when a customer requests multiple addresses,
those addresses are frequently allocated from the same Web page, by
control-clicking from a list box of the subnet’s addresses. In this way,
multiple addresses can be assigned by submitting a single form. There is
no such functionality in ipman. Each address allocated involves a
separate run of the program and the re-entry of the required information.

47

5.2.2 IP address binding

Unbinding IP addresses normally only happens when a server is
cancelled. When this happens, the addresses must be reclaimed. This
was previously done by means of the Web interface; when an IP address
is clicked, there is a button to delete record.

Again, the verdict was unanimous that the solution did not make IP
deallocation any simpler. There was no complaint, however, that
deallocation had been made any more difficult, either. Repetitive clicking
to delete IP address records was not considered any more difficult than
repetitive runs of ipman.

5.2.3 IP querying

The tests of IP address querying went very well. The staff members felt
that the scan was simple to run and produced the needed results in a
timely and efficient fashion. The only suggestion as far as the interface
and functionality was concerned was that, since the state of the system
was not being changed by the scan, there was no real reason to have the
function protected by a login. Additionally, removal of the login
requirement from the scanning function would facilitate scheduling the
scan as a cron job.

5.2.4 Logging

The logging aspect of the program was very well received. In the current
environment, it is very difficult for the technical staff to recover from any
error made in adding or deleting address records. Records in
ipmanage_ipplan have a timestamp indicating when they were last
modified; however, very few staff members have both the access and the
knowledge to extract the needed data to undo the mistake in a timely
fashion. Further, deleted records, of course, have no timestamp at all. If
a record is accidentally deleted, there is no way to recover the proper
state of the system easily. The logging facilities of ipman record the time,
date, user, address, and server label involved in every instance of IP
address binding or unbinding. This makes recovering from a mistake
much simpler than in the previous environment.

5.3 Performance

The solution performed solidly in most aspects. It is robust, with ample
error checking and error logging in the event things went poorly. Once it
was fully debugged and implemented, there were no problems with the
program crashing.

48

The database accesses performed well, and there were no issues with
errors or incomplete transactions. Logging also exhibited good
performance. The log messages are concise, so do not threaten to
overwhelm disk space or lead to the creation of overly large files.

The only performance issue involved IP address querying. Recall from
chapter 4 that the parent sleeps while each of the child processes are
given an opportunity to capture a response packet. In the tested version
of the program, the parent process sleeps for one-tenth of a second.
Since each address has five ARP requests sent to it, each address takes a
half of a second for each pass.

With 38 subnets and approximately 253 addresses per subnet to scan,
the total number of IP addresses on the first pass is 9614. This means
that the first pass would take approximately 80 minutes.

The sleep value for the parent process was arbitrarily chosen. One
hundred milliseconds seemed ample time to receive a reply packet, and
in the testing environment the entire scan completed in an acceptably
short amount of time. In the live environment, 80 minutes is too long.
However, there is no reason that the parent sleep time cannot be
shortened. Given that the environment is a 100 Mbps Ethernet network,
replies to an ARP packet can be expected in 10 msec or less. Thus, the
sleep time for the parent could easily be reduced to .01 seconds, bringing
the total time for the first pass down to a little more than eight minutes.

5.4 Conclusion

This chapter demonstrated that, on balance, the solution as presented
did not bring about the desired benefits as far as combining the
‘technical’ and ‘recordkeeping’ aspects of IP address management. The
present solution did little to make IP address deallocation easier, and
actually made address allocation more difficult in certain situations.
However, the logging features added by the solution were very beneficial.
Moreover, the solution performed well, although minor, easily-made
adjustments to the program parameters could improve the IP address
query run time considerably. The next chapter will briefly discusses
potential avenues for further development of this solution, as well as
other areas of study.

49

CHAPTER 6

 Conclusions and Recommendations for Further Work

Overall, the finding has been that the desired improvements to IP
address allocation and deallocation have not been realized. The IP
querying function, however, has performed as expected, and with minor
modifications is ready for the sponsor’s live environment. However, these
failures to meet desired outcomes can be easily remedied.

A few modifications to the IP address allocation and deallocation process
could decidedly turn things around and make this process much easier.
These modifications did not manifest in the solution as tested due to
design flaws (requested functionality that was simply not implemented in
the design) and the lack of request for certain functionality.

As an example of the latter, consider the IP deallocation process. The
ipman program already has all the essential abilities required to
implement a function that will reclaim all IP addresses from a given
server. A function could very easily be added that would prompt the
technician for the server label. It could then perform a lookup of the
server label in the ipmanage_ipplan database ipaddr table, find all IP
address records tied to that label, extract the addresses to an array in
memory, delete the records in the ipaddr table, and bind the addresses in
the array to the IP host server’s adapter. Thus, a single command and
entry of the server’s label can perform all necessary actions to reclaim an
IP address from a server.

The solution could also easily make IP address allocation much simpler.
Without a great deal of extra work, functions could be added to make
address allocation simpler as well. There is no need for the technician to
search through a Web interface for allegedly free IP addresses, and then
arping those addresses to find verify that information. By simply
entering the server label and the number of addresses to allocate, ipman
could perform database lookups to find potentially free addresses, use its
get_mac function to verify that they are free, and perform all the
necessary functions to update tables and unbind the addresses from the
IP host server.

While the implementation of arguments to the program to perform a
single function was found to be efficient, the necessity to immediately log
in again if more than one function was being performed was found to be
onerous. It would be worthwhile to implement a menu system if the
program is invoked with no arguments. With such a menu system, the

50

user can log in a single time, and continue to run functions without the
need for authenticating each time.

Essentially, a potentially powerful system has been barely uncovered in
this project. By adding more database functionality, options, and some
performance enhancements, it would be possible to perform all IP
address management from this single solution. While the solution does
not solve all problems associated with IP address management, it takes
some serious first steps; the investigation of the next steps is worthy of
consideration.

51

References Cited

Barnes, D. and Sakandar, B. (2005) Cicso LAN Switching Fundamentals.
Indianapolis: Cisco Press.

Deitel, H. and Deitel, P. (2003) C++ How to Program. 4th ed. Upper Saddle
River, NJ: Prentice Hall.

Kernighan, B. W., and Ritchie, D. M. (1988) The C Programming Langauage.
2nd ed. Upper Saddle River, NJ: Prentice Hall PTR.

Kurose, J. and Ross, K. (2003) Computer Networking: A Top-Down Approach
Featuring the Internet. 2nd ed. Boston: Addison Wesley.

Mitchell, M., Oldham, J. and Samuel, A. (2001) Advanced Linux Programming.
Indianapolis: New Riders Publishing.

MySQL AB. (2004) MySQL Reference Manual. [Internet] Madison: MySQL AB.
Available from:
<http://mirror.services.wisc.edu/mysql/Downloads/Manual/manual.pdf>
[Accessed 28 September 2005]

Plummer, David C. (1982) An Ethernet Address Resolution Protocol. [Internet]
Rockville: Internet Engineering Task Force. Available from:
<http://www.ietf.org/rfc/rfc0826.txt?number=826> [Accessed 28 September 2004]

Robbins, A. (2004) Linux Programming by Example. Upper Saddle River, NJ:
Prentice Hall PTR.

Schiffman, M. (2003) Building Open Source Network Security Tools:
Components and Techniques. Indianapolis: Wiley Publishing.

Syngress Media, Inc. (1998) CCNA Cisco Certified Network Associate Study
Guide. Berkely: Osborne/McGraw-Hill.

52

Appendix A

 SOURCE CODE FOR THE IPMAN PROGRAM

53

/* Serial 2005092003 */
/* Source code available for download at
http://zaichik.org/msc/ipman.c
 */

#define _GNU_SOURCE
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <malloc.h>
#include <unistd.h>
#include <getopt.h>
#include <openssl/md5.h>
#include <pcap.h>
#include <mysql/mysql.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <sys/shm.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <ctype.h>
#include <libnet.h>

/*** Global variables
 */

char *target_mac[5]; // This has to be global, since
 // pcap_callback_fct can't be sent params and
 // has no return
char *temp_mac; // Ditto
char *myName; /* The name under which the program is running. Used in
 most functions */
char *username; /* The username from login function; used in many
 functions for logging */

enum e_query { INSERT, DELETE };
typedef enum e_query query;

enum e_boolean { FALSE, TRUE };
typedef enum e_boolean boolean;

/*** Functions
 */

int add_iphostserver_mac(char *ip); /* updates
 ipman_db.ips_and_macs.mac_addr with the IP host
 server's MAC address
 on a binding operation, called from bindips(). */

int add_new_addr_block(int octet1, int octet2, int octet3); /* adds a
 new C-class to the local IPs database */

54

int add_new_base(int oct1, int oct2, int oct3); /* adds a new base
 record for a new C-class to ipmanage_ipplan */

void add_report(char *msg); /* Adds item to
 /var/log/ipman/ipman.report */

int bindips(const char *ip, char *netmask);

void delete_unboundip(char *ip);

unsigned int dotted_to_int(char *addr); /* returns the integer value
 of a IPv4 dotted decimal notation */

int get_base(const char *ip);/* returns the baseindex from
 ipmanage_ipplan.base for inserting a
 record into ipmanage_ipplan.ipaddr.
 Returns -1 on error, baseindex otherwise */
void get_mac(char *ip_addr); /* arpings the IP address, puts the MAC
 address in target_mac[] or packs it full
 of 0.0.0.0 if a non-responder */
int get_user_id(void); /* gets ipman_db.staff_members.staff_id based
 on login name */

char* int_to_dotted(unsigned int ipv4);

int ip_is_bound(const char *addr); /* Checks /etc/ips to see if IP
 already bound to IP host server */

int is_numeric(char *str); /* Checks to see if a string is all
 numeric */

int logEntry(const char *message, const char *file); /* Passed the
 message and the log file, does the logging. */

int login(void); /* compares username-password combo; returns 1 on
 failure */

int open_report(void); /* Creates the report file
 /var/log/ipman/ipman.report and adds the date.
 Returns -1 if unable to. */

int pass_one(void); // Runs the scan on ipman_db.ips_and_macs

int pass_two_three(void); // Runs the scan on ipman_db.no_response

void pcap_callback_fct(u_char *what, struct pcap_pkthdr *pkt_header,
 u_char *packet);

void print_usage(void);

int query_ipmanage(char *ip, query action);
 /* ip is the IP to add/delete, and int (enum queryType instead?)
 to indicate INSERT or DELETE
 Will ask for the server label in the event of INSERT,
 lookup label and verify action in
 event of DELETE. Of course, bindips() entails DELETE
 (reclaiming an IP from

55

 a customer) and unbindip() entails INSERT (assigning them
 to a customer). */
int reload_ipaliases(void); /* Calls WHM ipaliases reload, returns 0
 on failure */

int report_non_responders(void);

int report_old_unbound(void);

int report_unbound_response(void);

int scan(int report); /* Scans IPs in local database, returns 0 on
 any error */

int send_report(char *sendMsg); /* Emails report digest */

int set_scannable(char *ip, boolean scan); /* Updates
 ipman_db.ips_and_macs.scan to 0 on bind, 1 on unbind */

void to_upper(char *the_string); /* changes a string to all
 uppercase, used for MACs */

int unbindip(const char *addr); /* Unbinds a single IP address */

int update_unbound(char *ip, query queryType); /* INSERT from
 unbindip(), DELETE from scan when response received */

int validate_addr(const char *addr, int *lower, int *upper); /*
 Indicates if input is invalid, range, or single IP. If
 a range, the function sets lower and upper bounds */

#define MAX_SIZE_IPADDR 20 /* xxx.xxx.xxx.xxx-xxx\0 */
#define MAX_SIZE_NETMASK 16 /* xxx.xxx.xxx.xxx\0 */
#define MAX_SIZE_MSG 2048 /* Maximum characters in message sent to
 logEntry() function. */

#ifndef ETH_ALEN
#define ETH_ALEN 6
#endif

#ifndef IP_ALEN
#define IP_ALEN 4
#endif
#define MAX_SIZE_IPADDR 20
#define MAX_SIZE_ETHADDR 20 // xx:xx:xx:xx:xx:xx\0

int main(int argc, char **argv) {

 char o; /* return from getopt_long() */
 char *ip;
 char *netmask;
 char *mac;
 int charsRead; /* for the bind operation */
 char *tempch;
 int success;
 int MAX_IPADDR_SIZE = MAX_SIZE_IPADDR;
 int MAX_NETMASK_SIZE = MAX_SIZE_NETMASK;

56

 // Define the flags below.
 int bind = 0, checkip = 0, lookupMAC = 0, noalert = 0, runscan =
0, unbind = 0;
 struct option longopts[] = {
 { "bind", no_argument, NULL, 'b' },
 { "check", required_argument, NULL, 'c' },
 { "help", no_argument, NULL, 'h' },
 { "lookup", required_argument, NULL, 'l' },
 { "noalert", no_argument, NULL, 'n' },
 { "scan", no_argument, NULL, 's' },
 { "unbind", no_argument, NULL, 'u' },
 { 0, 0, 0, 0 }
 };

 myName = argv[0];

 if(argc == 1) {
 print_usage();
 return(1);
 }

 while((o = getopt_long(argc, argv, "bc:hl:nsuW;", longopts,
NULL)) != -1) {

 switch(o) {
 case 'b': // bind
 if(bind || checkip || lookupMAC || noalert ||
runscan || unbind) {
 print_usage();
 exit(0);
 }
 bind = 1;
 break;
 case 'c':
 if(bind || checkip || lookupMAC || noalert ||
runscan || unbind) {
 print_usage();
 exit(0);
 }
 checkip = 1;
 ip = optarg;
 break;
 case 'h':
 print_usage();
 exit(0);
 break;
 case 'l':
 if(bind || checkip || lookupMAC || noalert ||
runscan || unbind) {
 print_usage();
 exit(0);
 }
 lookupMAC = 1;
 mac = optarg;
 break;
 case 'n':

57

 if(bind || checkip || lookupMAC || noalert ||
unbind) {
 print_usage();
 exit(0);
 }
 noalert = 1;
 break;
 case 's':
 if(bind || checkip || lookupMAC || runscan ||
unbind) {
 print_usage();
 exit(0);
 }
 runscan = 1;
 break;
 case 'u':
 if(bind || checkip || lookupMAC || noalert ||
runscan || unbind) {
 print_usage();
 exit(0);
 }
 unbind = 1;
 break;
 case '?':
 default:
 printf("%s: option `-%c' is invalid.\n",
myName, optopt);
 print_usage();
 return(1);
 } /* switch */
 } /* while */

 /**

 * Once we are here, only one--possibly two--flags have been
set (two in
 * the case of -n, which can double with -s). Otherwise, we can
assume
 * if a flag has been set, we run the associated action. We do
need to
 * check when we get to if(noalert) that the flag for runscan
has been
 * set, because the above will not catch ONLY -n being set.
First we need
 * to get logged in, or quit with error.

**/

 if(!login()) {
 return(1);
 }

 if(bind) {
 ip = (char *) malloc (MAX_SIZE_IPADDR + 1);

 if(ip == NULL) {

58

 printf("%s: Out of memory in main() ln 40.", argv[0
]);
 return(-1);
 }
 netmask = (char *) malloc(MAX_SIZE_NETMASK + 1);
 if(netmask == NULL) {
 fprintf(stderr, "%s: Out of memory in main() ln
45.", argv[0]);
 return(-1);
 }

 printf("Enter the IP address: ");
 charsRead = getline(&ip, &MAX_IPADDR_SIZE + 1, stdin);
 printf("Enter the subnet mask: ");
 charsRead = getline(&netmask, &MAX_NETMASK_SIZE + 1, stdin
);
 bindips(ip, netmask);
 free(ip);
 free(netmask);
 }

// The arg below was assigned in the switch.
 if(checkip) {
 printf("IP = %s\n", ip);
 }

// The arg below was assigned in the switch.
 if(lookupMAC) {
 printf("MAC = %s\n", mac);
 }

 if(noalert) {
 if(! runscan) {
 fprintf(stderr, "--noalert (-n) option only
allowed with the --scan (-s) option.\n");
 print_usage();
 exit(1);
 }
 }

 if(runscan) {
 int x = 0; // just a counter
 for(x = 0; x < 5; x++) {
 target_mac[x] = (char *) malloc(
MAX_SIZE_ETHADDR + 1);
 if(target_mac[x] == NULL) {
 printf("%s: Out of memory in main().\n",
myName);
 exit(-1);
 }
 }
 scan(1); // means report
 for(x = 0; x < 5; x++){
 free(target_mac[x]);
 }
 return(0);
 }

59

 if(unbind) {

 ip = (char *) malloc (MAX_SIZE_IPADDR + 1);

 if(ip == NULL) {
 fprintf(stderr, "%s: Out of memory in main() ln
96.\n", argv[0]);
 return(-1);
 }

 printf("Enter the IP address: ");
 // as in bind(): charsRead = getline(&ip, &MAX_IPADDR_SIZE
+ 1, stdin);
 charsRead = getline(&ip, &MAX_IPADDR_SIZE + 1, stdin);
 if ((tempch = strchr(ip ,'\n')) != NULL) {
 *tempch = '\0';
 }

 if(unbindip(ip)) {
 fprintf(stderr, "%s: Error in unbindip().\n",
myName);
 return(1);
 }
 free(ip);

 }
 return(0);

} /* main() */

int add_iphostserver_mac(char *ip) {

 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("UPDATE ips_and_macs SET mac_addr
= '00:10:DC:37:D1:74' WHERE ip_addr = 1234567890");
 char *mysqlQuery;
 unsigned int ipv4 = dotted_to_int(ip);
 int return_code = 0;

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in add_iphostserver_mac().\n",
myName);
 exit(-1);
 }

 mysql_init(&conn);
 sprintf(mysqlQuery, "UPDATE ips_and_macs SET mac_addr =
'00:10:DC:37:D1:74' WHERE ip_addr = %u", ipv4);
 mysql_real_connect(&conn, server, mysqlUser, mysqlPass, mysqlDB,
0, NULL, 0);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));

60

 if(mysql_errno(&conn)) {
 printf("Error updating ipman_db.ips_and_macs.mac_addr for
IP address %s\n", ip);
 printf("MySQL error is %s\n", mysql_error(&conn));
 printf("Contact an administrator.\n");
 return_code = -1;
 }
 mysql_close(&conn);
 free(mysqlQuery);
 return(return_code);

} // add_iphostserver_mac

int add_new_addr_block(int octet1, int octet2, int octet3) {

 /* Takes first three octets of a class C address and adds to
local database.
 Returns 1 if all is good, 0 otherwise.
 */

 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("INSERT INTO ips_and_macs
VALUES('xxx.xxx.xxx.xxx', '255.255.255.0', '', x)");
 int x = 0; // just a counter
 char *mysqlQuery;
 char *logMsg;
 unsigned int baseaddr = 0;
 char *ipString;
 add_new_base(octet1, octet2, octet3);

 ipString = (char *) malloc(MAX_SIZE_IPADDR);
 if(ipString == NULL) {
 printf("%s: Out of memory in add_new_base().\n");
 exit(-1);
 }

 sprintf(ipString, "%d.%d.%d.0", octet1, octet2, octet3);
 baseaddr = dotted_to_int(ipString) + 2; // baseaddr starts at
integer equiv of x.x.x.2
 mysqlQuery = (char *) malloc (MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 fprintf(stderr, "%s: Out of memory in add_new_addr_block()
ln 181.\n", myName);
 exit(-1);
 }

 logMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(logMsg == NULL) {
 fprintf(stderr, "%s: Out of memory in add_new_addr_block()
ln 181.\n", myName);
 free(mysqlQuery);
 }

61

 mysql_init(&conn);
 mysql_real_connect(&conn, server, mysqlUser, mysqlPass, mysqlDB,
0, NULL, 0);
 for(x = 2; x <= 254; x++) { // adding x.x.x.2 - x.x.x.254, 253
addresses

 sprintf(mysqlQuery, "INSERT INTO ips_and_macs VALUES(%u,
'255.255.255.0', '', 0)",
 baseaddr);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery)
);
 if(mysql_errno(&conn)) {
 fprintf(stderr, "%s: Error on INSERT: %s.\n",
myName, mysql_error(&conn));

 free(mysqlQuery);
 if(x == 2) {
 sprintf(logMsg, "IP address %d.%d.%d.2 added
to list of local IPs by user %s when an error occurred. The IP may not
have been added successfully to the database.\n",
 octet1, octet2, octet3, username);
 }
 else {
 sprintf(logMsg, "IP addresses %d.%d.%d.2-%d
added to list of local IPs by user %s when an error occurred. The last
IP may not have been added successfully to the database.\n", octet1,
octet2, octet3, x);
 }
 printf("%s: %s", myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 free(logMsg);
 return(-1);
 }
 baseaddr++;
 }

 free(mysqlQuery);
 free(logMsg);
 return(0);

} /* add_new_addr_block() */

int add_new_base(const int oct1, const int oct2, const int oct3) {

 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipmanage_ipplan";
 int MAX_SIZE_QUERY = strlen("INSERT INTO base (baseaddr,
subnetsize, admingrp, customer, lastmod, userid, swipmod) VALUES
(1234567890, 256, 'NET-XXX-XXX-XXX-0', 'IPADMINs', 2, NOW(),
'XXXXXXXXXXXXXXXX', '0000-00-00 00:00:00')");
 int x = 0; // just a counter
 char *mysqlQuery;
 char *logMsg;

62

 // database variables
 char *ipString;
 unsigned int baseaddr; // will be dotted_to_int(
"oct1.oct2.oct3.0");
 char *descrip; // 'NET-OCT1-OCT2-OCT3-0'
 int subnetsize = 256;
 char *admingrp = "IPADMINs";
 int customer = 2;
 // lastmod will be NOW()
 // userid will be username
 char *swipmod = "0000-00-00 00:00:00";

 int returnValue; // for mysql_affected_rows() return value

 // assign field values
 ipString = (char *) malloc(MAX_SIZE_IPADDR);
 if(ipString == NULL) {
 printf("%s: Out of memory in add_new_base().\n");
 exit(-1);
 }

 sprintf(ipString, "%d.%d.%d.0", oct1, oct2, oct3);
 baseaddr = dotted_to_int(ipString);

 descrip = (char *) malloc(strlen("NET-XXX-XXX-XXX-0") + 1);
 if(descrip == NULL) {
 printf("%s: Out of memory in add_new_base().\n");
 exit(-1);
 }
 sprintf(descrip, "NET-%d-%d-%d-0", oct1, oct2, oct3);

 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(ipString);
 free(descrip);
 }
 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in add_new_base().\n");
 free(ipString);
 free(descrip);
 }
 sprintf(mysqlQuery, "INSERT INTO base (baseaddr, subnetsize,
descrip, admingrp, customer, lastmod, userid, swipmod) VALUES (%u, %d,
'%s', '%s', %d, NOW(), '%s', '%s')", baseaddr, subnetsize, descrip,
admingrp, customer, username, swipmod);

 free(descrip); // Still need ipString for logging.
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));

 returnValue = mysql_affected_rows(&conn);
 if(returnValue == 1) {
 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {

63

 printf("%s: Out of memory in add_new_base().\n",
myName);
 free(ipString);
 exit (-1);
 }
 sprintf(logMsg,
 "New base added to ipmanage_ipplan.base by user %s.
New base address is %s.\n",
 username, ipString);
 logEntry(logMsg, "/var/log/ipman/ipman.bind"); //
ipman.bind because this is part of adding a new C-class
 // and therefore
involves binding new IPs to the server.
 printf("%s: %s", myName, logMsg);
 }
 else {
 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
add_new_base().\n", myName);
 free(ipString);
 exit (-1);
 }
 sprintf(logMsg, "New C-class bound to IP host server
and added to ipman_db.ips_and_macs, but adding new base to
ipmanage_ipplan.base by user %s failed. Base address that needs to be
added is %s.\n", username, ipString);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 printf("%s: %s", myName, logMsg);
 }
 free(ipString);
 free(logMsg);
 return(0);
}

void add_report(char *msg) {

 FILE *out;

 if((out = fopen("/var/log/ipman/ipman.report", "a")) == NULL
) {
 printf("%s: Could not open /var/log/ipman/ipman.report
for append.\n", myName);
 printf("%s: Scan aborting. Contact an
administrator.\n", myName);
 exit(-1);
 }

 fprintf(out, "%s", msg);
 fclose(out);
}

int bindips(const char *addr, char *mask) {

 char *octet1, *octet2, *octet3, *octet4; /* Octets as strings */
 int oct1, oct2, oct3, oct4; /* Octets as ints */
 FILE *fd; /* /etc/ips */

64

 int i; /* all-purpose counter */
 char *output; /* for output to file /etc/ips */
 char *tempch; /* temp char for removing \n from strings */
 char *tempAddr; /* holds value of addr */
 int lower = 0; /* lower bound of range of IPs to bind */
 int upper = 0; /* upper bound of IP range */
 enum e_input { INVALID, SINGLE_IP, IP_RANGE, C_BLOCK };
 typedef enum e_input input;
 input inputType;
 char *logMsg;
 int MAX_SIZE_OCTET = 4;
 query queryType = DELETE;
 char bind_anyway;
 int returnValue = 0; // for return values
 boolean scan = TRUE; // value to set on
ipman_db.ips_and_macs.scan

 /* Tokenize the string */
 /* Replace \n with \0 */
 if((tempch = strchr(addr, '\n')) != NULL)
 *tempch = '\0';

 if((tempch = strchr(mask, '\n')) != NULL)
 *tempch = '\0';

 tempAddr = (char *) malloc(MAX_SIZE_IPADDR + 1);
 if(tempAddr == NULL) {
 fprintf(stderr, "%s: Out of memory in bindips() on ln
172.\n", myName);
 free(tempAddr);
 return(-1);
 }
 strcpy(tempAddr, addr);
 inputType = validate_addr(tempAddr, &lower, &upper);

 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {
 fprintf(stderr, "%s: Out of memory in bindips() ln
299.\n", myName);
 exit(-1);
 }

 output = (char *) malloc(MAX_SIZE_IPADDR + 1 +
MAX_SIZE_NETMASK + 1);
 if(output == NULL) {
 fprintf(stderr, "%s: Out of memory in bindips() on ln
172.\n", myName);
 return(-1);
 }

 switch(inputType) {

 case INVALID:
 printf("%s: The address or range %s is invalid.\n",
myName, addr);
 free(tempAddr);
 free(logMsg);

65

 free(output);
 return(1);
 break;

 case SINGLE_IP:

 if((fd = fopen("/etc/ips", "a")) == NULL) {
 printf("%s: Could not open /etc/ips for append
in bindip() ln 177.\n", myName);
 free(tempAddr);
 free(logMsg);
 free(output);
 return (-1);
 }

 strcpy(output, addr);
 if ((tempch = strchr(output,'\n')) != NULL) {
 *tempch = '\0';
 }

 if(ip_is_bound(output)) {
 printf("%s: IP %s is already bound.\n",
myName, output);
 free(tempAddr);
 free(logMsg);
 free(output);
 return(1);
 }

 returnValue = query_ipmanage(tempAddr, queryType);
 if(returnValue != 0) {
 printf("%s: Record was not deleted
from ipmanage_ipplan\n", myName);
 printf("Continue with bind operation for IP
address %s [y/n]: ", output);
 bind_anyway = getchar(); getchar();
 if(bind_anyway == 'n') {
 printf("%s: Bind operation for IP %s
cancelled.\n", myName, output);
 return(1);
 }
 }
 add_iphostserver_mac(tempAddr);
 set_scannable(tempAddr, scan);
 strcat(output, ":");
 strcat(output, mask);

 printf("%s\n", output);
 fprintf(fd, "%s\n", output);

 sprintf(logMsg, "IP address %s bound to IP host
server by user %s.\n", tempAddr, username);
 logEntry(logMsg, "/var/log/ipman/ipman.bind");
 printf("%s: %s", myName, logMsg);
 delete_unboundip(tempAddr);
 break;
 case C_BLOCK:

66

 // This entails adding individual IPs to ips_and_macs
and /etc/ips, adding baseindex to
 // ipmanage_ipplan.base
 octet1 = (char *) malloc(MAX_SIZE_OCTET);
 if(octet1 = NULL) {
 printf("Out of memory in bindips().\n");
 free(tempAddr);
 free(logMsg);
 free(output);
 return(-1);
 }
 octet2 = (char *) malloc(MAX_SIZE_OCTET);
 if(octet2 = NULL) {
 printf("Out of memory in bindips().\n"
);
 free(tempAddr);
 free(logMsg);
 free(output);
 free(octet1);
 return(-1);
 }
 octet3 = (char *) malloc(MAX_SIZE_OCTET);
 if(octet3 = NULL) {
 printf("Out of memory in bindips().\n"
);
 free(tempAddr);
 free(logMsg);
 free(output);
 free(octet1);
 free(octet2);
 return(-1);
 }
 octet4 = (char *) malloc(MAX_SIZE_OCTET);
 if(octet4 = NULL) {
 printf("Out of memory in bindips().\n"
);
 free(tempAddr);
 free(logMsg);
 free(output);
 free(octet1);
 free(octet2);
 free(octet3);
 return(-1);
 }

 strcpy(tempAddr, addr);
 sscanf(tempAddr, "%d.%d.%d.%d", &oct1, &oct2, &oct3,
&oct4);

 add_new_addr_block(oct1, oct2, oct3);
 /* No break as we also do the stuff below. When
setting logMsg we will have to
 test value of inputType to differentiate between
adding a range or a C block.
 */
 case IP_RANGE:

67

 if((fd = fopen("/etc/ips", "a")) == NULL) {
 printf("%s: Could not open /etc/ips for append
in bindip() ln 177.\n", myName);
 return (-1);
 }

 strcpy(output, addr);
 if ((tempch = strchr(output,'\n')) != NULL) {
 *tempch = '\0';
 }
 strcpy(tempAddr, addr);
 /* Tokenize string to get octets 1 through 3. */
 octet1 = strtok(tempAddr, ".");
 octet2 = strtok(NULL, ".");
 octet3 = strtok(NULL, ".");
 for(i = lower; i <= upper; ++i) { /* lower and
upper set by call to validate_addr() */

 sprintf(output, "%s.%s.%s.%d", octet1, octet2,
octet3, i);
 if(ip_is_bound(output))
 printf("%s: %s is already bound.\n",
myName, output);
 else {
 // If we are adding a new C-block, we
don't want to query
 // ipmanage_ipplan; there will be no
recoid there
 if(inputType != C_BLOCK) {
 returnValue = query_ipmanage(
output, queryType);
 }
 if(returnValue == 0) {
 strcat(output, ":");
 strcat(output, mask);
 strcat(output, "\n");
 fprintf(fd, "%s", output);
 add_iphostserver_mac(tempAddr);
 set_scannable(tempAddr, scan
);
 }
 else {
 // it didn't go well, the record
was not deleted from ipmanage
 sprintf(logMsg, "The record for IP
address %s could not be deleted from ipmanage_ipplan.ipaddr.
query_ipmanage() returned %d. The address has not been bound to the IP
host server.\n", output, returnValue);
 logEntry(logMsg,
"/var/log/ipman/ipman.err");
 printf("%s: %sContact an
admin.\n", myName, logMsg);
 }
 }
 }
 if(inputType == C_BLOCK)

68

 sprintf(logMsg, "Class C address block %s
added to database and bound to IP host server by user %s.\n", addr,
username);
 else
 sprintf(logMsg, "IP address range %s bound to
IP host \
 server by user %s.\n", addr, username);
 logEntry(logMsg, "/var/log/ipman/ipman.bind");
 printf("%s: %s", myName, logMsg);
 break;
 default:
 printf("%s: Something horrible has happened in
bindips() ln 288", myName);
 free(output);
 return(-1);
 }/* switch(inputType) */
 fclose(fd);
 free(logMsg);
 free(output);
 if(reload_ipaliases()) { // returns 0 if no error, so if
reload_ipaliases() != 0 (false) something bad...
 printf("Error reloading WHM ipaliases; contact an
administrator.\n");
 return(-1);
 }

 return(0);
}

unsigned int dotted_to_int(char *addr) {

 unsigned int answer;
 unsigned int oct1 = 0, oct2 = 0, oct3 = 0, oct4 = 0;
 unsigned int FIRST_OCT_MULTIPLIER = 16777216;
 unsigned int SECOND_OCT_MULTIPLIER = 65536;
 unsigned int THIRD_OCT_MULTIPLIER = 256;

 sscanf(addr, "%d.%d.%d.%d", &oct1, &oct2, &oct3, &oct4);
 answer = oct1 * FIRST_OCT_MULTIPLIER + oct2 *
SECOND_OCT_MULTIPLIER + oct3 * THIRD_OCT_MULTIPLIER + oct4;
 return(answer);
}

void delete_unboundip(char *ip){
 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 char *mysqlQuery;
 int MAX_SIZE_QUERY = strlen("DELETE FROM unbound_ips WHERE
ip_addr = 1234567890") + 1;
 unsigned int ipv4 = dotted_to_int(ip);

 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {

69

 printf("%s\n", mysql_error(&conn));
 printf("%s: Unable to delete potential record for %s from
ipman_db.unbound_ips.\n", myName);
 printf("Contact an administrator.\n");
 free(mysqlQuery);
 mysql_close(&conn);
 return;
 }
 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in delete_unboundip().\n");
 exit(-1);
 }
 sprintf(mysqlQuery, "DELETE FROM unbound_ips WHERE ip_addr =
%u", ipv4);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 free(mysqlQuery);
 mysql_close(&conn);
 return;
}

int get_base(const char *ip) {
 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;
 char *server = "localhost";
 char *mysqlUser = "root";
 char *mysqlPass = "kimBall0508";
 char *mysqlDB = "ipmanage_ipplan";
 int MAX_SIZE_QUERY = strlen("SELECT baseindex FROM base WHERE
descrip LIKE 'NET-XXX-XXX-XXX%'");
 char *mysqlQuery;

 unsigned int answer;
 unsigned int oct1 = 0, oct2 = 0, oct3 = 0, oct4 = 0;
 int returnValue; // mysqlAffected_rows() return
 sscanf(ip, "%d.%d.%d.%d.", &oct1, &oct2, &oct3, &oct4);

 mysqlQuery = (char *) malloc (MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in get_base().\n", myName);
 exit(-1);
 }

 sprintf(mysqlQuery, "SELECT baseindex FROM base WHERE descrip
LIKE 'NET-%d-%d-%d%%'", oct1, oct2, oct3);
 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 mysql_close(&conn);
 return(-1);
 }
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 free(mysqlQuery);

70

 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 mysql_close(&conn);
 return(-1);
 }
 returnValue = mysql_affected_rows(&conn);
 if(returnValue < 1) {
 printf("%s: No base index for IP address %s in
ipmanage_ipplan.base. Bind operation cancelled.\n", myName, ip);
 return(-1);
 }
 row = mysql_fetch_row(res);
 sscanf(row[0], "%d", &answer);
 mysql_close(&conn);
 return(answer);
} // get_base()

void get_mac(char *ip_addr) {

 pcap_t *pkt_descriptor; // like a file descriptor for
packets
 struct bpf_program prog_buff; // space for compiled filter
 char error_buf[PCAP_ERRBUF_SIZE];
 char libnet_error_buf[LIBNET_ERRBUF_SIZE];
 const u_char *packet;
 char *interface = "eth0";
 int x; // all-purpose counter
 int MAX_SIZE_FILTER = strlen("arp src host ") +
MAX_SIZE_IPADDR + 1;
 int t; // test for libnet errors
 //stuff for forking the process and IPC
 pid_t child_pid;
 char *shared_mem; // This will be shared for getting the MAC into
target_mac[]
 int shmseg_id;

 //stuff for building the packet
 libnet_t *context;
 u_int32_t temp_ip = 0;
 struct libnet_ether_addr *ptr_hwaddr;
 char src_ip[IP_ALEN], dest_ip[IP_ALEN];
 char dest_mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff,
0xff }; // We don't know this, need to broadcast.
 char src_mac[ETH_ALEN]; // Will get assigned later
 int c = 0, p = 0; // just counters
 char *filter; // the pcap filter so that we only pick up
packets of interest
 //build the ARP request packet

 // create the libnet session handle
 if((context = libnet_init(LIBNET_LINK, "eth0",
libnet_error_buf)) == NULL) {
 printf("libnet_init failed: %s", libnet_error_buf);
 }
 // pack the source and destination IPs
 temp_ip = libnet_name2addr4(context, "147.202.49.28",
LIBNET_DONT_RESOLVE);

71

 memcpy(src_ip, (char *) &temp_ip, IP_ALEN);
 temp_ip = libnet_name2addr4(context, ip_addr,
LIBNET_DONT_RESOLVE);
 memcpy(dest_ip, (char *) &temp_ip, IP_ALEN);

 // get the source MAC address
 ptr_hwaddr = libnet_get_hwaddr(context);
 memcpy(src_mac, ptr_hwaddr, ETH_ALEN);

 // create the header structures
 static libnet_ptag_t arp = 0, eth = 0;

 // start at the top of the stack--create the ARP headers
 arp = libnet_build_arp(
 ARPHRD_ETHER,
 ETHERTYPE_IP,
 ETH_ALEN,
 IP_ALEN,
 ARPOP_REQUEST,
 src_mac,
 (u_int8_t *)src_ip,
 dest_mac,
 (u_int8_t *)dest_ip,
 NULL,
 0,
 context,
 0);
 if(arp == -1) {
 printf("Error in libnet_build_arp: %s", libnet_geterror(
context));
 }

 // now add the Ethernet headers
 eth = libnet_build_ethernet(
 dest_mac,
 src_mac,
 ETHERTYPE_ARP,
 NULL,
 0,
 context,
 0);
 if(eth == -1) {
 printf("Error in libnet_build_ethernet: %s",
libnet_geterror(context));
 }
 // packet is built, let's get stuff read to capture the packets
we request
 // open for packet capture

 pkt_descriptor = pcap_open_live(interface, BUFSIZ, 0, 2000,
error_buf);
 if(pkt_descriptor == NULL) {
 printf("pcap function pcap_open_live(): %s", error_buf
);
 exit(1);
 }

72

 filter = (char *) malloc(MAX_SIZE_FILTER);
 if(filter == NULL) {
 printf("%s: Out of memory in get_mac().\n", myName);
 exit(-1);
 }

 sprintf(filter, "arp src host %s", ip_addr);

 if(pcap_compile(pkt_descriptor, &prog_buff, filter, 1, 0) < 0
) {
 printf("pcap function pcap_compile(): %s", error_buf);
 exit(1);
 }

 if(pcap_setfilter(pkt_descriptor, &prog_buff) < 0) {
 printf("pcap function pcap_setfilter(): %s", error_buf
);
 exit(1);
 }
 temp_mac = (char *) malloc(MAX_SIZE_ETHADDR + 1);
 if(temp_mac == NULL) {
 printf("%s: Out of memory in get_mac().\n", myName);
 free(filter);
 exit(-1);
 }
 // Start sending and receiving packets
 // First allocate the shared memory
 shmseg_id = shmget(IPC_PRIVATE, MAX_SIZE_ETHADDR, IPC_CREAT |
IPC_EXCL | S_IRUSR | S_IWUSR);
 for(x = 0; x < 5; x++) {
 t = libnet_write(context);
 if(t == -1) {
 printf("libnet_write error: %s\n", libnet_geterror(
context));
 }
 child_pid = fork();
 if(child_pid == 0) { // this is the child process
 // attach to shared memory
 shared_mem = (char *) shmat(shmseg_id, 0, 0);
 pcap_dispatch(pkt_descriptor, 1, (void *
)pcap_callback_fct, NULL);
 //convert to upper case
 to_upper(temp_mac);
 memcpy(shared_mem, temp_mac, MAX_SIZE_ETHADDR);
 exit(0);
 }
 else {
 sleep(.1);
 shared_mem = (char *) shmat(shmseg_id, 0, 0);
 if(strlen(shared_mem) == 0) {
 // the child has blocked, kill it
 kill(child_pid, SIGTERM);
 }
 }
 memcpy(target_mac[x], shared_mem, MAX_SIZE_ETHADDR
);
 }// for(x = 0; x < 5; x++)

73

 // detach shared memory and deallocate
 shmdt(shared_mem);
 shmctl(shmseg_id, IPC_RMID, 0);

 pcap_close(pkt_descriptor);
 libnet_destroy(context);
 free(filter);
 free(temp_mac);
}

int get_user_id(void) {

 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT MAX(staff_id) FROM
staff_members WHERE staff_name ='XXXXXXXXXXXXXXXX'");
 int user_id = 0;
 char *mysqlQuery;

 mysqlQuery = (char *) malloc (MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 fprintf(stderr, "%s: Out of memory in
get_user_id().\n", myName);
 exit(-1);
 }
 // If there are duplicates for staff_members.staff_name, the
assumption is that the one with the
 // highest (most recent) staff_id is currently running the
program as the previous one is no longer
 // with the company

 sprintf(mysqlQuery, "SELECT MAX(staff_id) FROM staff_members
WHERE staff_name ='%s'", username);
 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s: Error on connect: %s\n", myName,
mysql_error(&conn));
 printf("%s: Returning user_id = -1 from get_user_id().
Fix in ipman_db.unbound_ips.staff_id.\n");
 printf("%s: Continuing execution normally.\n");
 free(mysqlQuery);
 return(-1);
 }
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 free(mysqlQuery);
 if(mysql_errno(&conn)) {
 printf("%s: Error on SELECT: %s.\n", myName, mysql_error(
&conn));
 printf("%s: Returning user_id = -1 from get_user_id().
Fix in ipman_db.unbound_ips.staff_id.\n");
 printf("%s: Continuing execution normally.\n");

74

 return(-1);
 }
 if(!(res = mysql_use_result(&conn))) {
 printf("%s: Error on mysql_use_result(): %s.\n", myName,
mysql_error(&conn));
 printf("%s: Returning user_id = -1 from get_user_id().
Fix in ipman_db.unbound_ips.staff_id.\n");
 printf("%s: Continuing execution normally.\n");
 return(-1);
 }
 row = mysql_fetch_row(res);
 sscanf(row[0], "%d", &user_id);
 if(user_id < 1) {
 printf("%s: Error getting user_id.\n", myName);
 printf("%s: Returning user_id = -1 from get_user_id().
Fix in ipman_db.unbound_ips.staff_id.\n");
 printf("%s: Continuing execution normally.\n");
 return(-1);
 }
 return(user_id);
} // get_user_id()

char* int_to_dotted(unsigned int ipv4) {

 int remainder = 0;
 int octet1 = 0, octet2 = 0, octet3 = 0;
 unsigned int FIRST_OCT_MULTIPLIER = 16777216;
 unsigned int SECOND_OCT_MULTIPLIER = 65536;
 unsigned int THIRD_OCT_MULTIPLIER = 256;
 char *answer;

 answer = (char *) malloc(MAX_SIZE_IPADDR + 1);
 if(answer == NULL) {
 printf("%s: Out of memory in int_to_dotted().\n", myName
);
 exit(-1);
 }

 octet1 = ipv4 / FIRST_OCT_MULTIPLIER;
 ipv4 %= FIRST_OCT_MULTIPLIER;
 octet2 = ipv4 / SECOND_OCT_MULTIPLIER;
 ipv4 %= SECOND_OCT_MULTIPLIER;
 octet3 = ipv4 / THIRD_OCT_MULTIPLIER;
 ipv4 %= THIRD_OCT_MULTIPLIER;
 sprintf(answer, "%d.%d.%d.%d", octet1, octet2, octet3, ipv4);
 return(answer);
}

int is_numeric(char *str) {

 while(*str) {

 if(!isdigit(*str))
 return(0);
 str++;
 }
 return(1);

75

}

int ip_is_bound(const char *addr) {
 /* Check /etc/ips to see if the ip is already bound to the IP
host host server.
 Here we are going to return false (0) or true (1)
 */

 FILE *fd; /* /etc/ips */
 int MAX_LINE_LENGTH = 32; // xxx.xxx.xxx.xxx:xxx.xxx.xxx.xxx\0
 char line[MAX_LINE_LENGTH];
 char tempAddr[MAX_SIZE_IPADDR];
 char *token;

 if((fd = fopen("/etc/ips", "r")) == NULL) {
 printf("%s: Could not open /etc/ips for read in
ip_is_bound() ln 177.\n", myName);
 return (-1);
 }

 while(fgets(line, MAX_LINE_LENGTH, fd)) {
 token = strtok(line, ":");
 strcpy(tempAddr, token);
 if(strcmp(addr, tempAddr) == 0) {
 fclose(fd);
 return(1);
 }
 } //while fgets

 fclose(fd);
 return(0);
}

int logEntry(const char *message, const char *file) {

 FILE *out;
 char *time_buffer;
 time_t current_time;
 struct tm *local_time;
 int length;
 int MAX_TIME_BUFFER = 29;

 /* Get time/date and create string */
 time_buffer = (char *) malloc(MAX_TIME_BUFFER);
 if(time_buffer == NULL) {
 fprintf(stderr, "%s: Out of memory in logEntry() ln
368.\n", myName);
 exit(-1);
 }

 current_time = time(NULL);
 local_time = localtime(¤t_time);
 strcpy(time_buffer, asctime(local_time));
 length = strlen(time_buffer);

 if(time_buffer[length - 1] == '\n')
 time_buffer[length - 1] = ' ';

76

 if((out = fopen(file, "a")) == NULL) {
 fprintf(stderr, "Could not open %s for append.\n",
file);
 return(-1);
 }
 fprintf(out, "%s", time_buffer);
 free(time_buffer);
 fprintf(out, "%s", message);
 fclose(out);
 return(0);
}

int login(void) {

 /* Verifies login, returns 1 if OK and 0 on error.
 MD5 usage from http://www.openssl.org/docs/crypto/md5.html#
 */
 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;

 int MAX_PASSWORD = 16;
 int MAX_USERNAME = 16;

 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 char *mysqlQuery;
 int MAX_SIZE_QUERY = strlen("SELECT password FROM staff_members
WHERE staff_name = 'xxxxxxxxxxxxxxxx'");

 char *password;

 char *tempChar;
 int charsRead;

 unsigned char hash[MD5_DIGEST_LENGTH];
 char *hashStr;
 int i;

 username = (char *) malloc(MAX_USERNAME + 1);
 if(username == NULL) {
 fprintf(stderr, "%s: Out of memory in login() ln 202.\n",
myName);
 free(username);
 exit(-1);
 }

 printf("Login as: ");
 charsRead = getline(&username, &MAX_USERNAME + 1, stdin);
 if(charsRead == 1) {
 fprintf(stderr, "%s: Username cannot be blank.\n", myName
);
 free(username);
 return(0);

77

 }

 /* Replace \n with \0 */
 if((tempChar = strchr(username, '\n')) != NULL)
 *tempChar = '\0';

 password = (char *) malloc(MAX_PASSWORD + 1);

 if(password == NULL) {
 fprintf(stderr, "%s: Out of memory in login() ln 216.\n",
myName);
 free(username);
 free(password);
 exit(-1);
 }

 printf("Password for %s: ", username);

 strcpy(password, getpass(""));

 if((tempChar = strchr(password, '\n')) != NULL)
 *tempChar = '\0';

 if(strlen(password) < 1) {
 fprintf(stderr, "%s: Password cannot be blank.\n", myName
);
 free(username);
 free(password);
 return(0);
 }

 MD5(password, strlen(password), hash);
 free(password);

 hashStr = (char *) malloc (MD5_DIGEST_LENGTH * 2 + 1);
 if(hashStr == NULL) {
 printf("%s: Out of memory in login() ln 246.\n", myName);
 free(username);
 free(hashStr);
 exit(-1);
 }

 for(i = 0; i < MD5_DIGEST_LENGTH; ++i) {
 sprintf(hashStr + 2 * i, "%.2x", hash[i]);
 }

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in login() ln 257.\n", myName);
 free(username);
 free(hashStr);
 exit(-1);
 }

 sprintf(mysqlQuery, "SELECT staff_password FROM staff_members
WHERE staff_name = '%s'", username);
 mysql_init(&conn);

78

 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(username);
 free(hashStr);
 free(mysqlQuery);
 exit(-1);
 }

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 free(mysqlQuery);

 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 free(username);
 free(hashStr);
 exit(-1);
 }

 if(mysql_affected_rows(&conn) < 1) {
 printf("%s: Invalid login for user %s.\n", myName,
username);
 free(username);
 free(hashStr);
 mysql_close(&conn);
 return(0);
 }
 row = mysql_fetch_row(res);
 if(strcmp(hashStr, row[0]) != 0) {
 printf("%s: Invalid login for user %s.\n", myName,
username);
 free(hashStr);
 free(username);
 mysql_close(&conn);
 return(0);
 }

 printf("user %s logged in.\n", username);
 free(hashStr);
 mysql_close(&conn);
 return(1);
}

int open_report(void) {
 FILE *out;
 char *time_buffer;
 time_t current_time;
 struct tm *local_time;
 int length;
 int MAX_TIME_BUFFER = 29;
 /* Get time/date and create string */

 if((out = fopen("/var/log/ipman/ipman.report", "w")) == NULL
) {
 printf("%s: Could not create report file
/var/log/ipman/ipman.report.\n", myName);
 return(-1);

79

 }

 /* Get time/date and create string */
 time_buffer = (char *) malloc(MAX_TIME_BUFFER);
 if(time_buffer == NULL) {
 fprintf(stderr, "%s: Out of memory in logEntry() ln
368.\n", myName);
 exit(-1);
 }
 current_time = time(NULL);
 local_time = localtime(¤t_time);
 strcpy(time_buffer, asctime(local_time));
 length = strlen(time_buffer);

 if(time_buffer[length - 1] == '\n')
 time_buffer[length - 1] = ' ';

 fprintf(out, "%s: ipman scan begun.\n\n", time_buffer);
 fprintf(out, "***\n\n");
 fclose(out);
 return(0);
}

int pass_one(void) {

 // Scan ipman_db.ips_and_macs, move non-responders to
ipman_db.no_response,
 // report mismatches.
 // Return 0 for no mismatch, 1 on mismatch
 MYSQL conn;
 MYSQL conn_temp; // the xxx_temp vars here may be reset
immediately after use
 MYSQL_RES *res;
 MYSQL_RES *res_temp;
 MYSQL_ROW row;
 MYSQL_ROW row_temp;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT ip_addr, released_to FROM
unbound_ips WHERE ip_addr = 1234567890");
 char *mysqlQuery;
 char *ip;
 char *mac;
 unsigned int ipv4; // IP as unsigned int
 int x = 0; // counter
 int pass = 1; // this will keep track of which pass we are on,
mostly important for passes 2 and 3
 // For the report: The booleans are for the mailed digest on
error types
 boolean mismatch = FALSE;
 boolean no_response = FALSE;
 boolean old_unbound = FALSE;
 boolean unbound_response = FALSE; // This one is reset at the
bottom of the loop through unbound_ips
 FILE *out;

80

 char *reportMsg;

 /* Scan IPs in pman_db.ips_and_macs.
 Return 0 if no mismatch, 1 if a mismatch.
 */

 if(open_report() == -1) {
 printf("%s: Report file could not be opened, scan
aborted.\n", myName);
 return(-1);
 }
 // Mismatch report header
 reportMsg = (char *) malloc(MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in pass_one(). Scan
aborting, contact an adminstrator.\n", myName);
 exit(-1);
 }

 sprintf(reportMsg, "IP - MAC Address
mismatches\n***************************\n");
 add_report(reportMsg);

 // Get list of IPs to scan.
 ip = (char *) malloc(MAX_SIZE_MSG);
 if(ip == NULL) {
 printf("%s: Out of memory in pass_one(). Scan
aborting, contact an adminstrator.\n", myName);
 free(reportMsg);
 exit(-1);
 }

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in pass_one().\n", myName);
 free(ip);
 free(reportMsg);
 exit(-1);
 }
 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);
 free(reportMsg);
 mysql_close(&conn);
 return(-1);
 }
 sprintf(mysqlQuery, "SELECT ip_addr, mac_addr FROM
ips_and_macs WHERE scan = 1");

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);

81

 free(reportMsg);
 mysql_close(&conn);
 return(-1);
 }

 mac = (char *) malloc(MAX_SIZE_ETHADDR + 1);
 if(mac == NULL) {
 printf("%s: Out of memory in pass_one().\n", myName);
 free(mysqlQuery);
 free(ip);
 free(reportMsg);
 exit(-1);
 }

 while(row = mysql_fetch_row(res)) {
 ipv4 = strtoul(row[0], NULL, 10);
 ip = int_to_dotted(ipv4);
 sprintf(mac, "%s", row[1]);
 for(x = 0; x < 5; x++)
 sprintf(target_mac[x], "");
 get_mac(ip);

 // first, deal with a non-responder.
 if(strlen(target_mac[0]) == 0 &&
 strlen(target_mac[1]) == 0 &&
 strlen(target_mac[2]) == 0 &&
 strlen(target_mac[3]) == 0 &&
 strlen(target_mac[4]) == 0) {
 if(!ip_is_bound(ip)) {
 // add the IP address to non-responders
 mysql_init(&conn_temp);
 sprintf(mysqlQuery, "INSERT INTO
no_response VALUES(%u, 1, NOW())", ipv4);
 if(!mysql_real_connect(&conn_temp,
server, mysqlUser, mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(
&conn_temp));
 printf("%s: IP address %s did
not respond, but there was an error adding it to the table
no_response.\n", myName, row[0]);
 }
 else {
 mysql_real_query(&conn_temp,
mysqlQuery, strlen(mysqlQuery));
 }
 mysql_close(&conn_temp);
 }
 }

 // otherwise, compare the stuff in target_mac with
mac...they should be the same. Or, if the
 // packet got dropped, the array member for that packet
should be a zero-length string.
 else {
 if((strcmp(mac, target_mac[0]) == 0 ||
strlen(target_mac[0]) == 0) &&

82

 (strcmp(mac, target_mac[1]) == 0 ||
strlen(target_mac[1]) == 0) &&
 (strcmp(mac, target_mac[2]) == 0 ||
strlen(target_mac[2]) == 0) &&
 (strcmp(mac, target_mac[3]) == 0 ||
strlen(target_mac[3]) == 0) &&
 (strcmp(mac, target_mac[4]) == 0 ||
strlen(target_mac[4]) == 0)) {

 // All is good
/* We don't really need this stuff here, unless the decision is made
later to leave non-responders in the
 no_response table between scans.
 sprintf(mysqlQuery, "DELETE FROM
no_response WHERE ip_addr = %u", ipv4);
 mysql_init(&conn_temp);
 if(!mysql_real_connect(&conn_temp,
server, mysqlUser, mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(
&conn_temp));
 printf("%s: Please remove
ip_addr %u manually from no_response.\n", myName, ipv4);
 }
 else {
 mysql_real_query(&conn_temp,
mysqlQuery, strlen(mysqlQuery));
 }
 mysql_close(&conn_temp);
 */
 }
 else {
 // A stolen IP address! Report it!

 printf("%s: The IP address %s does
not report its assigned MAC address of %s. This will be reported
shortly.\n", myName, ip, row[1]);
 mismatch = TRUE;
 reportMsg = (char *) malloc(
MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory
pass_one(). Scan aborted, contact adminstrator.\n", myName);
 exit(-1);
 }
 sprintf(reportMsg, "IP address %s
should have MAC %s, but reported:\n%s\n%s\n%s\n%s\n%s\n.",
 ip, row[1], target_mac[0],
target_mac[1], target_mac[2],
 target_mac[3], target_mac[4
]);
 add_report(reportMsg);
 free(reportMsg);

 }
 }
 } // while

83

 free(reportMsg);
 free(ip);
 free(mac);
 free(mysqlQuery);
 mysql_free_result(res);
 mysql_close(&conn);

 if(mismatch == FALSE)
 return(0);
 else
 return(1);
}

int pass_two_three(void) {

 // Scan ipman_db.no_response, report mismatches
 // Return 0 if no mismatches, 1 if there is a mismatch
 MYSQL conn;
 MYSQL conn_temp; // the xxx_temp vars here may be reset
immediately after use
 MYSQL_RES *res;
 MYSQL_RES *res_temp;
 MYSQL_ROW row;
 MYSQL_ROW row_temp;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT no_response.ip_addr,
mac_addr FROM no_response, ips_and_macs WHERE no_response.ip_addr =
ips_and_macs.ip_addr");
 char *mysqlQuery;
 char *ip;
 char *mac;
 unsigned int ipv4; // IP as unsigned int
 int x = 0; // counter
 int pass = 1; // this will keep track of which pass we are on,
mostly important for passes 2 and 3
 // For the report: The booleans are for the mailed digest on
error types
 boolean mismatch = FALSE;
 boolean no_response = FALSE;
 boolean old_unbound = FALSE;
 boolean unbound_response = FALSE; // This one is reset at the
bottom of the loop through unbound_ips
 FILE *out;
 char *reportMsg;

 /* Scan IPs in pman_db.ips_and_macs.
 Return 0 if no mismatch, 1 if a mismatch.
 */

 if(open_report() == -1) {
 printf("%s: Report file could not be opened, scan
aborted.\n", myName);
 return(-1);
 }

84

 // Mismatch report header
 reportMsg = (char *) malloc(MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in pass_one(). Scan
aborting, contact an adminstrator.\n", myName);
 exit(-1);
 }

 sprintf(reportMsg, "IP - MAC Address
mismatches\n***************************\n");
 add_report(reportMsg);

 // Get list of IPs to scan.
 ip = (char *) malloc(MAX_SIZE_MSG);
 if(ip == NULL) {
 printf("%s: Out of memory in pass_one(). Scan
aborting, contact an adminstrator.\n", myName);
 free(reportMsg);
 exit(-1);
 }

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in pass_one().\n", myName);
 free(ip);
 free(reportMsg);
 exit(-1);
 }
 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);
 free(reportMsg);
 mysql_close(&conn);
 return(-1);
 }
 sprintf(mysqlQuery,
 "SELECT no_response.ip_addr, mac_addr FROM no_response,
ips_and_macs WHERE no_response.ip_addr = ips_and_macs.ip_addr");

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 if(mysql_errno(&conn)) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);
 free(mac);
 free(reportMsg);
 mysql_close(&conn);
 return(-1);
 }
 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);
 free(reportMsg);

85

 mysql_close(&conn);
 return(-1);
 }

 mac = (char *) malloc(MAX_SIZE_ETHADDR + 1);
 if(mac == NULL) {
 printf("%s: Out of memory in pass_one().\n", myName);
 free(mysqlQuery);
 free(ip);
 free(reportMsg);
 exit(-1);
 }

 while(row = mysql_fetch_row(res)) {
 ipv4 = strtoul(row[0], NULL, 10);
 ip = int_to_dotted(ipv4);
 sprintf(mac, "%s", row[1]);
 for(x = 0; x < 5; x++)
 sprintf(target_mac[x], "");
 get_mac(ip);

 // first, deal with a non-responder.
 if(strlen(target_mac[0]) == 0 &&
 strlen(target_mac[1]) == 0 &&
 strlen(target_mac[2]) == 0 &&
 strlen(target_mac[3]) == 0 &&
 strlen(target_mac[4]) == 0) {
 if(!ip_is_bound(ip)) {
 // add the IP address to non-responders
 mysql_init(&conn_temp);
 sprintf(mysqlQuery, "INSERT INTO
no_response VALUES(%u, 1, NOW())", ipv4);
 if(!mysql_real_connect(&conn_temp,
server, mysqlUser, mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(
&conn_temp));
 printf("%s: IP address %s did
not respond, but there was an error adding it to the table
no_response.\n", myName, row[0]);
 }
 else {
 mysql_real_query(&conn_temp,
mysqlQuery, strlen(mysqlQuery));
 }
 mysql_close(&conn_temp);
 }
 }
// otherwise, compare the stuff in target_mac with ip...they should be
the same. Or, if the
// packet got dropped, the array member for that packet should be a
zero-length string.
 else {
 if((strcmp(mac, target_mac[0]) == 0 ||
strlen(target_mac[0]) == 0) &&
 (strcmp(mac, target_mac[1]) == 0 ||
strlen(target_mac[1]) == 0) &&

86

 (strcmp(mac, target_mac[2]) == 0 ||
strlen(target_mac[2]) == 0) &&
 (strcmp(mac, target_mac[3]) == 0 ||
strlen(target_mac[3]) == 0) &&
 (strcmp(mac, target_mac[4]) == 0 ||
strlen(target_mac[4]) == 0)) {

 // All is good
/* We don't really need this stuff here, unless the decision is made
later to leave non-responders in the
 no_response table between scans.
 sprintf(mysqlQuery, "DELETE FROM
no_response WHERE ip_addr = %u", ipv4);
 mysql_init(&conn_temp);
 if(!mysql_real_connect(&conn_temp,
server, mysqlUser, mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(
&conn_temp));
 printf("%s: Please remove
ip_addr %u manually from no_response.\n", myName, ipv4);
 }
 else {
 mysql_real_query(&conn_temp,
mysqlQuery, strlen(mysqlQuery));
 }
 mysql_close(&conn_temp);
 */
 }
 else {
 // A stolen IP address! Report it!

 printf("%s: The IP address %s does
not report its assigned MAC address of %s. This will be reported
shortly.\n", myName, ip, row[1]);
 mismatch = TRUE;
 reportMsg = (char *) malloc(
MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory
pass_one(). Scan aborted, contact adminstrator.\n", myName);
 exit(-1);
 }
 sprintf(reportMsg, "IP address %s
should have MAC %s, but reported:\n%s\n%s\n%s\n%s\n%s\n.",
 ip, row[1], target_mac[0],
target_mac[1], target_mac[2],
 target_mac[3], target_mac[4
]);
 add_report(reportMsg);
 free(reportMsg);

 }
 }
 } // while

 free(reportMsg);
 free(ip);

87

 free(mac);
 free(mysqlQuery);
 mysql_free_result(res);
 mysql_close(&conn);

 if(mismatch == FALSE)
 return(0);
 else
 return(1);

}

void pcap_callback_fct(u_char *what, struct pcap_pkthdr *pkt_header,
u_char *packet) {

 struct ether_header *eth_header; // net/ethernet.h
 struct ether_arp *arp_header; // linux/if_arp.h
 u_char src_ha[19]; //source hardware address
 u_char src_pa[17]; //source protocol address

 eth_header = (struct ether_header *) packet;

 // If it's an ARP packet, get some ARP info from it:
 if(ntohs(eth_header->ether_type) == ETHERTYPE_ARP) {
 arp_header = (struct ether_arp *) (packet + sizeof(
struct ether_header));
 if(arp_header->ea_hdr.ar_op == ntohs(ARPOP_REPLY))
{
 snprintf(src_ha, sizeof(src_ha) - 1,
"%02x:%02x:%02x:%02x:%02x:%02x:",
 arp_header->arp_sha[0], arp_header-
>arp_sha[1],
 arp_header->arp_sha[2], arp_header-
>arp_sha[3],
 arp_header->arp_sha[4], arp_header-
>arp_sha[5]);

 snprintf(src_pa, sizeof(src_pa) - 1,
"%d.%d.%d.%d",
 arp_header->arp_spa[0], arp_header-
>arp_spa[1],
 arp_header->arp_spa[2], arp_header-
>arp_spa[3]);
 memcpy(temp_mac, src_ha, 19);
 }
 }
}

void print_usage(void) {

 printf("Usage: ipman [OPTIONS]\n");
 printf("Manage IP addresses by comparing IP address to
authorized Ethernet address.\n\n");
 printf("--bind,\t\t-b\tBind an IP address or an entire class C
to the local interface.\n");

88

 printf("--check=IP,\t-c\tCheck a single IP address (but don't
log a mismatch).\n");
 printf("--help,\t\t-h\tPrint this help and exit.\n");
 printf("--lookup=MAC,\t-l\tLook up authorized IP addresses for a
given MAC address.\n");
 printf("--noalert,\t-n\tPrint alerts to stdout rather than
sending alert\n");
 printf("--scan,\t\t-s\tScan IPs in local database and send alert
if there is a mismatch.\n");
 printf("--unbind,\t-u\tUnbind an IP address and mark the IP as
assigned in ipmanage.net.\n");
 printf("\nNote that only one option can be chosen with the
exception of --noalert (-n) with --scan (-s).\n");
}

int query_ipmanage(char *ip, query action) {

 // enum queryType { INSERT, DELETE };
 // all the variables for getting info from user:
 unsigned int ipv4 = 0;
 int MAX_SIZE_DB_FIELD = 80;
 char *label;
 char *location;
 char *server_type;
 int charsRead;
 char verify;
 char *tempChar; // for replacing newline with null terminator

 // variables for providing info to user:
 int monitor; // for holding the value of the row count
 // Variables for the query
 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;

 int base = get_base(ip); // baseindex from
ipmanage_ipplan.base
 if(base == -1) { // No baseindex found!
 printf("%s: No base index found for IP address %s.
Operation cancelled.\n", myName, ip);
 return(-1);
 }
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipmanage_ipplan";
 char *mysqlQuery;
 int MAX_SIZE_QUERY = strlen("INSERT INTO ipaddr VALUES
(1234567890, '', '', '555-555-5555', '', 123456, NOW(),
'xxxxxxxxxxxxxxxx'") + MAX_SIZE_DB_FIELD * 3;
 // Each of the blank fields here could be 80 characters
 int count;
 // for logging
 char *logMsg;
 char *old_server_label;

 label = (char *) malloc(MAX_SIZE_DB_FIELD);

89

 if(label == NULL) {
 fprintf(stderr, "%s: Out of memory in
query_ipmanage().\n", myName);
 exit(-1);
 }

 location = (char *) malloc(MAX_SIZE_DB_FIELD);
 if(location == NULL) {
 fprintf(stderr, "%s: Out of memory in
query_ipmanage().\n", myName);
 free(label);
 exit(-1);
 }

 server_type = (char *) malloc(MAX_SIZE_DB_FIELD);
 if(server_type == NULL) {
 fprintf(stderr, "%s: Out of memory in
query_ipmanage().\n", myName);
 free(label);
 free(location);
 exit(-1);
 }

 ipv4 = dotted_to_int(ip);

 if(action == INSERT) {
 // Get server label, location, server type
 printf("Enter the server label: ");
 charsRead = getline(&label, &MAX_SIZE_DB_FIELD, stdin
);
 if(charsRead == 1) {
 fprintf(stderr, "%s: Server label cannot be
blank.\n", myName);
 return(1);
 }
 /* Replace \n with \0 */
 if((tempChar = strchr(label, '\n')) != NULL)
 *tempChar = '\0';

 printf("Enter the server DC and cabinet: ");
 charsRead = getline(&location, &MAX_SIZE_DB_FIELD,
stdin);
 if(charsRead == 1) {
 fprintf(stderr, "%s: Server location cannot be
blank.\n", myName);
 return(1);
 }
 /* Replace \n with \0 */
 if((tempChar = strchr(location, '\n')) != NULL)
 *tempChar = '\0';
 printf("Enter the server type (dedicated, colo, etc.):
");
 charsRead = getline(&server_type, &MAX_SIZE_DB_FIELD,
stdin);
 if(charsRead == 1) {
 fprintf(stderr, "%s: Server type cannot be
blank.\n", myName);

90

 return(1);
 }
 /* Replace \n with \0 */
 if((tempChar = strchr(server_type, '\n')) != NULL)
 *tempChar = '\0';

 // Echo and verify
 printf("Adding a record for IP address %s for the
following server:\n", ip);
 printf("Server label: %s\nLocation: %s\nType: %s\n",
label, location, server_type);
 printf("Add this record [y/n]: ");
 verify = getchar(); getchar(); // swallow the carriage
return

 if(verify == 'y') {
 // Then run the query
 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY +
1);
 if(mysqlQuery == NULL) {
 fprintf(stderr, "%s: Out of memory in
query_ipmanage.\n", myName);
 free(label);
 free(location);
 free(server_type);
 exit(-1);
 }
 // Check to see if there is record for the
address
 sprintf(mysqlQuery, "SELECT COUNT(*) AS
num_rows FROM ipaddr WHERE ipaddr = %u", ipv4);

 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server,
mysqlUser, mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 mysql_close(&conn);
 exit(-1);
 }

 mysql_real_query(&conn, mysqlQuery, strlen(
mysqlQuery));

 if(!(res = mysql_use_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 fprintf(stderr, "Invalid results from
mysql_use_results in query_ipmanage.\n");
 }

91

 row = mysql_fetch_row(res);
 sscanf(row[0], "%d", &count);
 if(count > 0) {
 printf("IP address %s alread in table
ipmanage_ipplan.ipaddr", ip);
 mysql_close(&conn);
 return(1);
 }
 mysql_free_result(res);

 // No record for the IP exists, go ahead and add it.
 sprintf(mysqlQuery, "INSERT INTO ipaddr VALUES
(%u, '%s', '%s', '555-555-5555', \
 '%s', %d, NOW(), '%s')",
 ipv4, label, location, server_type,
base, username);

 mysql_real_query(&conn, mysqlQuery, strlen(
mysqlQuery));

 if(mysql_affected_rows(&conn) < 1) { // The
record was not added. Log it.
 printf("The record was not added. The
query was %s. Contact an administrator.\n", mysqlQuery);
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);

 logMsg = (char *) malloc(
MAX_SIZE_MSG);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
query_ipmanage.\n");
 mysql_close(&conn);
 exit(-1);
 }
 sprintf(logMsg, "Failed to add record
for address %s to ipmanage_ipplan. Query: %s.\n", ip, mysqlQuery);
 logEntry(logMsg,
"/var/log/ipman/ipman.err");
 printf("%s: %s. Contact an administrator.\n",
myName, logMsg);
 free(logMsg);
 mysql_close(&conn);
 return(1);
 }

 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
query_ipmanage.\n");
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 mysql_close(&conn);

92

 exit(-1);
 }
 sprintf(logMsg, "IP address %s assigned to
server %s by user %s.\n", ip, label, username);
 logEntry(logMsg, "/var/log/ipman/ipman.unbind"
);
 printf("%s: %s", myName, logMsg);
 free(logMsg);
 return(0);
 }
 else { // user did not verify the entry
 printf("%s: Operation cancelled.\n", myName);
 free(label);
 free(location);
 free(server_type);
 mysql_close(&conn);
 return(1);
 }

 }
 else { // action == DELETE

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in
query_ipmanage.\n", myName);
 free(label);
 free(location);
 free(server_type);
 exit(-1);
 }
 // Check to see if there is record for the address
 sprintf(mysqlQuery, "SELECT userinf FROM ipaddr WHERE
ipaddr = %u", ipv4);

 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser,
mysqlPass, mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 exit(-1);
 }

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery
));
 res = mysql_store_result(&conn);
 monitor = mysql_affected_rows(&conn);
 if(monitor < 1) {
 printf("There is no record to delete for IP
address %s.\n", ip);
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);

93

 mysql_free_result(res);
 mysql_close(&conn);
 return(1);
 }

 row = mysql_fetch_row(res);
 printf("Delete record for IP address %s, assigned to
%s [y/n]: ", ip, row[0]);
 verify = getchar();

 if(verify == 'y') {
 // free old result before new query, but first save
old server label
 old_server_label = (char *) malloc(
MAX_SIZE_DB_FIELD);
 if(old_server_label == NULL) {
 printf("%s: Out of memory in
query_ipmanage().\n", myName);
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 mysql_close(&conn);
 exit(-1);
 }

 sprintf(old_server_label, "%s", row[0]);
 mysql_free_result(res);

 sprintf(mysqlQuery, "DELETE FROM ipaddr WHERE
ipaddr = %u", ipv4);
 mysql_real_query(&conn, mysqlQuery, strlen(
mysqlQuery));
 if(mysql_affected_rows(&conn) < 1) {
 printf("Record for IP address %s was
not deleted.", ip);
 logMsg = (char *) malloc(MAX_SIZE_MSG
);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
query_ipmanage().\n");
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 free(old_server_label);
 exit(-1);
 }
 sprintf(logMsg, "Attempt to delete
ipmanage_ipplan record for %s failed (query: \
 %s)\n", mysqlQuery);
 logEntry(logMsg,
"/var/log/ipman/ipman.err");
 printf("%s: %s Contact an administrator.\n",
myName, logMsg);
 return(1);
 }

94

 else { // record was deleted, log it in
ipman.bind
 // (since this would be part of a
binding operation)
 printf("Record for IP address %s was
deleted.\n", ip);
 logMsg = (char *) malloc(MAX_SIZE_MSG
);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
query_ipmanage().\n");
 free(label);
 free(location);
 free(server_type);
 free(mysqlQuery);
 exit(-1);
 }
 sprintf(logMsg, "Record for IP %s
deleted by user %s. Record formerly allocated to server %s.\n", ip,
username, old_server_label);
 logEntry(logMsg,
"/var/log/ipman/ipman.bind");
 printf("%s: %s", myName, logMsg);
 return(0);
 }
 }
 printf("Delete operation cancelled by user.\n");
 return(1);
 } // action = DELETE

} // query_ipmanage()

int reload_ipaliases(void) {

 /* fork a child, exec ipaliases, and exit.
 parent sleeps until child exits and returns proper exit
code.*/

 pid_t childpid;
 int status;

 if((childpid = fork()) < 0) {
 printf("%s: Error forking child process in
reload_ipaliases() ln 380.\n", myName);
 return(-1);
 }
 else {
 if(childpid == 0) {
 system("/sbin/ifdown eth0");
 system("/sbin/ifup eth0");
 system("/scripts/ipaliases reload");
 exit(0);
 }
 else {
 /* this is the parent, wait(for childpid)*/
 while(childpid != wait(&status))

95

 ; /* Just waiting */
 if(status) {
 printf("%s: Error in child:
reload_ipaliases().\ n", myName);
 return(-1);
 }
 }
 }

 return(0);
}

int report_non_responders(void) {

 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT ip_addr, released_to FROM
unbound_ips WHERE ip_addr = 1234567890");
 char *mysqlQuery;
 char *ip;
 char *mac;
 char *reportMsg;
 unsigned int ipv4; // IP as unsigned int
 int x = 0; // counter
 boolean no_response = FALSE;

 ip = (char *) malloc(MAX_SIZE_IPADDR);
 if(ip = NULL) {
 printf("%s: Out of memory in report_non_reponders().\n",
myName);
 exit(-1);
 }

 mac = (char *) malloc(MAX_SIZE_ETHADDR);
 if(mac = NULL) {
 printf("%s: Out of memory in
report_non_reponders().\n", myName);
 free(ip);
 exit(-1);
 }

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY);
 if(mac = NULL) {
 printf("%s: Out of memory in
report_non_reponders().\n", myName);
 free(ip);
 free(mac);
 exit(-1);
 }

 mysql_init(&conn);

96

 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("mysql_real_connect(): %s\n", mysql_error(
&conn));
 printf("%s: Third pass completed, mismatches
reported, but remaining IPs in no_response never responded.\n",
myName);
 printf("%s: Report on non-responders not completed.
Contact an administrator.\n", myName);
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }
 sprintf(mysqlQuery, "SELECT ip_addr FROM no_response");

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 if(mysql_errno(&conn)) {
 printf("mysql_real_query: %s\n", mysql_error(&conn));
 }
 if(!(res = mysql_store_result(&conn))) {
 printf("mysql_store_result(): %s\n", mysql_error(
&conn));
 printf("%s: Third pass completed, mismatches
reported, but remaining IPs in no_response never responded.\n",
 myName);
 printf("%s: Report on non-responders not completed.
Contact an administrator.\n", myName);
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }

 if(mysql_affected_rows(&conn) > 0) {
 no_response = TRUE;

 // Add no_response report header
 reportMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in
report_non_response().\n", myName);
 printf("Mismatches reported, non-responders in table
no_response have not responded.\n");
 printf("Unbound IPs have not been queried.
Contact an administrator.\n");
 exit(-1);
 }
 sprintf(reportMsg,
 "\nIP addresses not responding to ARP
requests\n***\n");
 add_report(reportMsg);

 while(row = mysql_fetch_row(res)) {
 ipv4 = strtoul(row[0], NULL, 10);

97

 ip = int_to_dotted(ipv4);
 sprintf(reportMsg, "%s\n", ip);
 add_report (reportMsg);
 }
 sprintf(mysqlQuery, "DELETE FROM no_response");
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery
));
 free(reportMsg);
 }
 mysql_free_result(res);
 mysql_close(&conn);
 free(ip);
 free(mac);
 free(mysqlQuery);

 if(no_response == FALSE)
 return(0);
 else
 return(1);

} // report_non_reponders()

int report_old_unbound(void) {

 MYSQL conn;
 MYSQL_RES *res;
 MYSQL_ROW row;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT * FROM unbound_ips WHERE
DATE_SUB(CURDATE(),INTERVAL 2 DAY) > time_unbound");
 char *mysqlQuery;
 char *ip;
 char *reportMsg;
 unsigned int ipv4; // IP as unsigned int
 int x = 0; // counter
 boolean old_unbound = FALSE;

 ip = (char *) malloc(MAX_SIZE_IPADDR);
 if(ip == NULL) {
 printf("%s: Out of memory in report_old_unbound(). IP
address completed, mismatches\n", myName);
 printf("non-responders, and first responses from recently
released addresses reported.\n");
 printf("Report will not be sent; contact an
administrator.\n");
 exit(-1);
 }

 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in report_old_unbound().
IP address completed, mismatches\n", myName);
 printf("non-responders, and first responses from
recently released addresses reported.\n");

98

 printf("Report will not be sent; contact an
administrator.\n");
 exit(-1);
 }

 sprintf(mysqlQuery, "SELECT * FROM unbound_ips WHERE
DATE_SUB(CURDATE(),INTERVAL 2 DAY) > time_unbound");
 mysql_init(&conn);
 if(!mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0)) {
 printf("%s\n", mysql_error(&conn));
 free(mysqlQuery);
 free(ip);
 free(reportMsg);
 mysql_close(&conn);
 return(-1);
 }

 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));

 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 printf("Third pass completed, mismatches and non-
responders reported, but IPs in unbound_ips\n");
 printf("not scanned to check for extensive period of being
unbound. Contact an administrator.\n");
 free(mysqlQuery);
 free(ip);
 mysql_close(&conn);
 return(-1);
 }

 if(mysql_affected_rows(&conn) > 0) {
 old_unbound = TRUE;
 reportMsg = (char *) malloc(MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in report_old_unbound().
IP address completed, mismatches\n", myName);
 printf("non-responders, and first responses from
recently released addresses reported.\n");
 printf("Report will not be sent; contact an
administrator.\n");
 exit(-1);
 }

 sprintf(reportMsg,
 "IP addresses unbound for longer than two
days\n**\n");
 add_report(reportMsg);
 sprintf(reportMsg,
"ip_addr\treleased_to\ttime_unbound\n");
 add_report(reportMsg);
 while(row = mysql_fetch_row(res)) {
 ipv4 = strtoul(row[0], NULL, 10);
 sprintf(ip, "%s", int_to_dotted(ipv4));
 sprintf(reportMsg, "%s\t%s\t%s\n", ip, row[1
], row[2]);

99

 add_report(reportMsg);
 }
 free(reportMsg);
 }

 free(ip);
 free(mysqlQuery);
 mysql_close(&conn);
 if(old_unbound == FALSE)
 return(0);
 else
 return(1);

} // report_old_unbound()

int report_unbound_response(void) {

 MYSQL conn;
 MYSQL conn_temp;
 MYSQL_RES *res;
 MYSQL_RES *res_temp;
 MYSQL_ROW row;
 MYSQL_ROW row_temp;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("SELECT ip_addr, mac_addr FROM
ips_and_macs WHERE ip_addr = 1234567890");
 char *mysqlQuery;
 char *ip;
 char *mac;
 char *reportMsg;
 unsigned int ipv4; // IP as unsigned int
 int x = 0; // counter
 boolean old_unbound = FALSE;
 boolean unbound_response = FALSE;
 mysqlQuery = (char *) malloc(MAX_SIZE_QUERY);

 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in report_unbound_response().\n"
);
 exit(-1);
 }

 ip = (char *) malloc(MAX_SIZE_QUERY);
 if(ip == NULL) {
 printf("%s: Out of memory in
report_unbound_response().\n");
 free(mysqlQuery);
 exit(-1);
 }

 mac = (char *) malloc(MAX_SIZE_QUERY);
 if(mac == NULL) {
 printf("%s: Out of memory in
report_unbound_response().\n");

100

 free(mysqlQuery);
 free(ip);
 exit(-1);
 }

 reportMsg = (char *) malloc(MAX_SIZE_QUERY);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in
report_unbound_response().\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 exit(-1);
 }

 sprintf(reportMsg, "\nNewly Allocated IP Addresses Responding to
Requests\n");
 add_report(reportMsg);
 sprintf(reportMsg,
"***\n");
 add_report(reportMsg);
 sprintf(mysqlQuery, "SELECT ip_addr FROM unbound_ips");
 mysql_init(&conn);
 if(mysql_errno(&conn)) {
 printf("report_unbound_response(): %s\n", mysql_error(
&conn));
 printf("%s: Third pass completed, mismatches and non-
responders reported, but scan of\n", myName);
 printf("old unbound IPs aborted. Contact an
administrator.\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }
 mysql_real_connect(&conn, server, mysqlUser, mysqlPass, mysqlDB,
0, NULL, 0);
 if(mysql_errno(&conn)) {
 printf("mysql_real_connect(): %s\n", mysql_error(
&conn));
 printf("%s: Third pass completed, mismatches and non-
responders reported, but scan of\n", myName);
 printf("old unbound IPs aborted. Contact an
administrator.\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 if(mysql_errno(&conn)) {
 printf("%s\n", mysql_error(&conn));
 printf("mysql_real_query(): Third pass completed,
mismatches and non-responders reported,\n");

101

 printf("but scan of old unbound IPs aborted. Contact
an administrator.\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }
 if(!(res = mysql_store_result(&conn))) {
 printf("%s\n", mysql_error(&conn));
 printf("mysql_store_result(): Third pass completed,
mismatches and non-responders reported,\n");
 printf("but scan of old unbound IPs aborted. Contact an
administrator.\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_close(&conn);
 return(-1);
 }

 while(row = mysql_fetch_row(res)) {
 ipv4 = strtoul(row[0], NULL, 0);
 sprintf(mysqlQuery, "SELECT ip_addr, mac_addr FROM
ips_and_macs WHERE ip_addr = %u", ipv4);
 mysql_init(&conn_temp);
 mysql_real_connect(&conn_temp, server, mysqlUser,
mysqlPass, mysqlDB, 0, NULL, 0);
 mysql_real_query(&conn_temp, mysqlQuery, strlen(
mysqlQuery));
 if(!(res_temp = mysql_store_result(&conn_temp))) {
 printf("%s\n", mysql_error(&conn_temp));
 printf("%s: Third pass completed, mismatches and
non-responders reported, but scan of\n", myName);
 printf("old unbound IPs aborted. Contact an
administrator.\n");
 free(mysqlQuery);
 free(ip);
 free(mac);
 mysql_free_result(res);
 mysql_free_result(res_temp);
 mysql_close(&conn_temp);
 mysql_close(&conn);
 return(-1);
 }
 row_temp = mysql_fetch_row(res_temp);
 ipv4 = strtoul(row[0], NULL, 0);
 ip = int_to_dotted(ipv4);
 sprintf(mac, "%s", row_temp[1]);
 mysql_free_result(res_temp);
 mysql_close(&conn_temp);
 //Get rid of any junk in temp_mac[] from previous runs

 for(x= 0; x <= 4; x++)
 sprintf(target_mac[x], "");

 get_mac(ip);

102

 // if it's not a non-responder, get it out of the table
 // We also want to assign one responder's MAC to mac for ease
of comparison next
 if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }
 else if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }
 else if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }
 else if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }
 else if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }
 else if(strlen(target_mac[0]) != 0) {
 sprintf(mac, "%s", target_mac[0]);
 unbound_response = TRUE;
 }

 if(unbound_response == TRUE) { // Then remove it from
unbound_ips
 mysql_init(&conn_temp);
 mysql_real_connect(&conn_temp, server, mysqlUser,
mysqlPass, mysqlDB, 0, NULL, 0);
 sprintf(mysqlQuery, "DELETE FROM unbound_ips WHERE
ip_addr = %u", ipv4);
 mysql_real_query(&conn_temp, mysqlQuery, strlen(
mysqlQuery));
 // If all target_mac[]s agree, register the new mac
in ips_and_macs
 if((strcmp(mac, target_mac[0]) == 0 ||
strlen(target_mac[0]) == 0) &&
 (strcmp(mac, target_mac[1]) == 0 || strlen(
target_mac[1]) == 0) &&
 (strcmp(mac, target_mac[2]) == 0 || strlen(
target_mac[2]) == 0) &&
 (strcmp(mac, target_mac[3]) == 0 || strlen(
target_mac[3]) == 0) &&
 (strcmp(mac, target_mac[4]) == 0 || strlen(
target_mac[4]) == 0)) {
 sprintf(mysqlQuery,
 "UPDATE ips_and_macs SET mac_addr = '%s',
scan = 1 WHERE ip_addr = %u",
 mac, ipv4);

 mysql_real_query(&conn_temp, mysqlQuery,
strlen(mysqlQuery));

103

 if(mysql_errno(&conn_temp))
 printf("%s\n", mysql_error(&conn_temp
));
 }
 else {
 // if it responds but is not in agreement with
itself, put in
 // ips_and_macs, but also report it as a stolen
IP. Change the
 // value for mac, obviously, so we never
get a match as long as
 // this one is in the table
 sprintf(mac, "FF:FF:FF:FF:FF:FF");
 sprintf(mysqlQuery,
 "INSERT INTO ips_and_macs VALUES(%u,
'255.255.255.0', '%s', 1)",
 ipv4, mac);
 mysql_real_query(&conn_temp, mysqlQuery,
strlen(mysqlQuery));
 sprintf(ip, "%s", int_to_dotted(ipv4));
 sprintf(reportMsg, "Previously unbound IP
address %s has an address conflict.\n");
 add_report(reportMsg);
 logEntry(reportMsg, "/var/log/ipman/ipman.err"
);
 }
 } // if(unbound_response == TRUE)

 }// while(row = mysql_fetch_row(res))
 free(mysqlQuery);
 free(ip);
 free(mac);
 free(reportMsg);
 mysql_free_result(res);
 mysql_close(&conn);

 if(unbound_response == TRUE)
 return(1);
 else
 return(0);
}// report_unbound_response()

int scan(int report) {

 boolean mismatches = FALSE; // any mistmatches reported
 boolean old_unbound = FALSE; // any IPs in unbound_ips for more
than 2 days
 boolean unbound_response = FALSE; // any previously unbound IPs
that now respond
 boolean no_response = FALSE;// unbound IPs that have now
responded
 int scan_result = 0; // scan functions return -1 on error, 0 on
no mismatches, 1 on a mismatch
 char *reportMsg;
 int x = 0; // all-purpose counter

 /* Scan IPs in the local database.

104

 Return 0 on any kind of error.
 If report = 0, supress alert, otherwise alert as needed.
 */

 /* First pass -- mismatches will be reported immediately.
 Non-responders will be added to ipman_db.no_response
 */
 if(open_report() == -1) {
 printf("%s: Report file could not be opened, scan
aborted.\n", myName);
 return(-1);
 }
 // Mismatch report header
 reportMsg = (char *) malloc(MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in scan(). Scan aborting,
contact an adminstrator.\n", myName);
 exit(-1);
 }

 sprintf(reportMsg, "IP - MAC Address
mismatches\n***************************\n");
 add_report(reportMsg);

 scan_result = pass_one();
 if(scan_result == -1) {
 printf("%s: Scan failed. Contact an administrator.\n");
 }
 else {
 mismatches = (scan_result == 0)? FALSE : TRUE;
 }

 // Second pass -- mismatches will be reported immediately.

 scan_result = pass_two_three();
 if(scan_result == -1) {
 printf("%s: Second pass of the scan failed. Contact an
administrator.\n", myName);
 }
 else {
 if(mismatches == FALSE) {
 mismatches = (scan_result == 0)? FALSE : TRUE;
 }
 }

 printf("%s: Sleeping for 600 seconds.\n", myName);
 printf("There will be a countdown for entertainment
purposes.\n");
 for(x = 600; x > 0; x--) {
 if(x % 10 == 0)
 printf("%d", x);
 else
 printf(".");
 fflush(stdout);
 sleep(1);
 }
 printf("\n");

105

 // Third pass -- mismatches will be reported immediately.
 scan_result = pass_two_three();
 if(scan_result == -1) {
 printf("%s: Third pass of the scan failed. Contact
an administrator.\n", myName);
 }
 else {
 if(mismatches == FALSE) {
 mismatches = (scan_result == 0)? FALSE :
TRUE;
 }
 }

 scan_result = report_non_responders();
 if(scan_result == -1) {
 printf("%s: Report on non-responding IPs failed. Contact
an administrator.\n", myName);
 }
 else {
 no_response = (scan_result == 0)? FALSE : TRUE;
 }

 scan_result = report_unbound_response();
 if(scan_result == -1) {
 printf("%s: Report on newly responding IPs recently
allocated failed. Contact an administrator.\n", myName);
 }
 else {
 unbound_response = (scan_result == 0)? FALSE : TRUE;
 }

 scan_result = report_old_unbound();
 if(scan_result == -1) {
 printf("%s: Report on IPs unbound for more than 2 days
failed. Contact an administrator.\n", myName);

 }
 else {
 old_unbound = (scan_result == 0)? FALSE : TRUE;
 }

 // Report digest -- In this report: Mismatches - yes; Non-
responders - no; Never responded - yes.

 reportMsg = (char *) malloc(MAX_SIZE_MSG);
 if(reportMsg == NULL) {
 printf("%s: Out of memory in scan(). Report available at
/var/log/ipman/ipman.report but not sent.\n", myName);
 exit(-1);
 }

 sprintf(reportMsg, "IPMan report available at
/var/log/ipman/ipman.report.\nIn this report:\n");

 if(mismatches) {
 strcat(reportMsg, "IP address mismatches\n");

106

 }
 if(no_response) {
 strcat(reportMsg, "IP addresses not responding to ARP
requests\n");
 }
 if(old_unbound) {
 strcat(reportMsg, "IP addresses not responding,
released to customer more than 2 days ago\n");
 }
 if(unbound_response) {
 strcat(reportMsg, "IP addresses released to customer and
now responding\n");
 }

 strcat(reportMsg, "The report will be overwritten at the next
scan.\n");
 send_report(reportMsg);
 free(reportMsg);
 printf("%s: Report sent.\nIPMan scan complete.\n", myName);
 return(0);

} // scan()

int send_report(char *sendMsg) {

 char *sysBuff;
 char *subjectMsg = "IPMan scan report";
 char *rcpt_to = "admin@servercompany.com";

 sysBuff = (char *) malloc(MAX_SIZE_MSG);
 if(sysBuff == NULL) {
 printf("%s: Out of memory in send_report().\n");
 exit(-1);
 }
 sprintf (sysBuff, "echo \"%s\" | mail -s '%s' %s", sendMsg,
subjectMsg, rcpt_to);
 system (sysBuff);
 return(0);
}

int set_scannable(char *ip, boolean scan) {

 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_QUERY = strlen("UPDATE ips_and_macs SET scan = 0
WHERE ip_addr = 1234567890");
 int x = 0; // just a counter
 char *mysqlQuery;
 unsigned int ipv4 = dotted_to_int(ip);
 char *logMsg;

 mysql_init(&conn);
 mysqlQuery = (char *) malloc (MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {

107

 printf("%s: Out of memory in set_scannable() ln
181.\n", myName);
 exit(-1);
 }
 sprintf(mysqlQuery, "UPDATE ips_and_macs SET scan = %d WHERE
ip_addr = %u", scan, ipv4);
 mysql_real_connect(&conn, server, mysqlUser, mysqlPass, mysqlDB,
0, NULL, 0);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery));
 free(mysqlQuery);
 if(mysql_errno(&conn)) {
 printf("%s: Error on UPDATE: %s.\n", myName, mysql_error(
&conn));
 free(mysqlQuery);
 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {
 printf("%s: Out of memory in set_scannable. Error
updating ipman_db.ip_addr.scan for IP %s.\n", myName, ip);
 exit(-1);
 }
 sprintf(logMsg, "Error updating ipman_db.ip_addr.scan for
IP %s. Error is %s. set_scannable scan = %d.\n", ip, mysql_error(
&conn), scan);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 printf("%s: %sContact an administrator.\n", myName, logMsg
);
 free(logMsg);
 return(1);
 }
 return(0);
} // set_scannable()

void to_upper(char *the_string) {

 int x;
 for(x = 0; x < strlen(the_string); x++)
 the_string[x] = toupper(the_string[x]);
 return;
}

int unbindip(const char *addr) {

 /* open /etc/ips, copy lines that do NOT match addr
 to /etc/ips.tmp, delete /etc/ips, rename .tmp to ips.tmp

 Additionally, call query_ipmanage(char *ip, int *query_type
);
 Then call ipaliases reload, return 0 on success or -1 on error
 */
 FILE *in;
 FILE *out;
 char *ipstr;
 char *maskstr;
 char *tempstr;
 char *tokens = ":\n";
 int ipfound = 0;
 char *logMsg;

108

 query queryType = INSERT;
 boolean scan = FALSE; // value to set for
ipman_db.ips_and_macs.scan
 if((in = fopen("/etc/ips", "r")) == NULL) {
 printf("%s: Could not open /etc/ips.\n");
 return(-1);
 }

 if((out = fopen("/etc/ips.tmp", "w")) == NULL) {
 printf("%s: Could not create temp file /etc/ips.tmp.\n");
 return(-1);
 }

 tempstr = (char *) malloc(MAX_SIZE_IPADDR + 1 +
MAX_SIZE_NETMASK + 1);
 do {
 fscanf(in, "%s", tempstr);
 if(feof(in) || ferror(in)) break;
 ipstr = strtok(tempstr, tokens);
 maskstr = strtok(NULL, tokens);

 if(strcmp(ipstr, addr) != 0)
 fprintf(out, "%s:%s%s", ipstr, maskstr, "\n");
 else
 ipfound = 1;

 } while(!feof(in));

 sprintf(tempstr, "%s", addr);

 if(!ipfound)
 printf("%s: IP address %s not bound to this server.\n",
myName, addr);
 else {
 logMsg = (char *) malloc(MAX_SIZE_MSG);
 if(logMsg == NULL) {
 fprintf(stderr, "%s: Out of memory in unbindip() ln
608.\n", myName);
 free(tempstr);
 exit(-1);
 }
 // add record to ipmanage_ipplan.ipaddr

 if(query_ipmanage(tempstr, queryType) != 0) {
 sprintf(logMsg, "IP address %s unbound from IP host
server by user %s, but record in ipmanage_ipplan.ipaddr was not
successfully added.\n", addr, username);
 printf("%s: %sContact an administrator.\n", myName,
logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 free(logMsg);
 free(tempstr);
 return(-1);
 }
 if(set_scannable(tempstr, scan) != 0) {
 sprintf(logMsg, "ipman_db.ips_and_macs.scan not set
to 0 for IP address %s.\n", addr);

109

 printf("%s: %sFix it or contact an
administrator.\n", myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 }
 update_unbound(tempstr, queryType);
 sprintf(logMsg, "IP address %s unbound from IP host server
by user %s.\n", addr, username);
 printf("%s: %s", myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.unbind");
 free(logMsg);
 }

 free(tempstr);

 fclose(out);
 fclose(in);

 remove("/etc/ips");
 rename("/etc/ips.tmp", "/etc/ips");

 if(reload_ipaliases()) {
 printf("%s: Error reloading WHM ipaliases, contact an
administrator.\n", myName);
 return(-1);
 }

 return(0);
}

int update_unbound(char *ip, query queryType) {

 MYSQL conn;
 char *server = "localhost";
 char *mysqlUser = "user";
 char *mysqlPass = "pass";
 char *mysqlDB = "ipman_db";
 int MAX_SIZE_DB_FIELD = 80;
 int MAX_SIZE_QUERY = strlen("INSERT INTO unbound_ips
VALUES(1234567890, '', NOW(), 12345)") + MAX_SIZE_DB_FIELD;
 int x = 0; // just a counter
 char *mysqlQuery;
 unsigned int ipv4 = dotted_to_int(ip);
 char *logMsg;
 char *released_to;
 int charsRead;
 char *tmpchr;
 int user_id;

 mysqlQuery = (char *) malloc (MAX_SIZE_QUERY + 1);
 if(mysqlQuery == NULL) {
 printf("%s: Out of memory in update_unbound() ln
181.\n", myName);
 exit(-1);
 }
 if(queryType == INSERT) {
 released_to = (char *) malloc(MAX_SIZE_DB_FIELD + 1);

110

 if(released_to == NULL) {
 printf("%s: Out of memory in update_unbound() ln
181.\n", myName);
 exit(-1);
 }
 printf("Adding %s to unbound IPs table. Enter label of
server released to: ", ip);
 charsRead = getline(&released_to, &MAX_SIZE_DB_FIELD + 1,
stdin);

 if ((tmpchr = strchr(released_to ,'\n')) != NULL) {
 *tmpchr = '\0';
 }
 user_id = get_user_id();
 sprintf(mysqlQuery, "INSERT INTO unbound_ips VALUES(%u,
'%s', NOW(), %d)", ipv4, released_to, user_id);

 mysql_init(&conn);
 mysql_real_connect(&conn, server, mysqlUser, mysqlPass,
mysqlDB, 0, NULL, 0);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery)
);
 if(mysql_errno(&conn)) {
 printf("%s: Error on INSERT: %s.\n", myName,
mysql_error(&conn));
 logMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
update_unbound().\n", myName);
 free(mysqlQuery);
 free(released_to);
 exit(-1);
 }
 sprintf(logMsg, "Error adding to
ipman_db.unbound_ips for IP address %s: MySQL error was %s\n", ip,
mysql_error(&conn));
 printf("%s: %sContact an administrator.\n", myName,
logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 free(logMsg);
 return(-1);
 }
 logMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(logMsg == NULL) {
 printf("%s: Out of memory in update_unbound().\n",
myName);
 free(mysqlQuery);
 free(released_to);
 exit(-1);
 }
 sprintf(logMsg, "IP address %s released to server %s and
entered in ipman_db.unbound_ips by user %s.\n", ip, released_to,
username);
 printf("%s: %s", myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.unbind");
 mysql_close(&conn);
 free(mysqlQuery);

111

 free(released_to);
 return(0);
 }
 else {
 sprintf(mysqlQuery, "DELETE FROM unbound_ips WHERE ip_addr
= %u", ipv4);
 mysql_init(&conn);
 mysql_real_connect(&conn, server, mysqlUser,
mysqlPass, mysqlDB, 0, NULL, 0);
 mysql_real_query(&conn, mysqlQuery, strlen(mysqlQuery
));
 if(mysql_errno(&conn)) {
 printf("%s: Error on DELETE: %s.\n", myName,
mysql_error(&conn));
 logMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
update_unbound().\n", myName);
 free(mysqlQuery);
 exit(-1);
 }
 sprintf(logMsg, "Error deleting from
ipman_db.unbound_ips for IP address %s: MySQL error was %s\n", ip,
mysql_error(&conn));
 printf("%s: %sContact an administrator.\n",
myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.err");
 free(logMsg);
 return(-1);
 }
 logMsg = (char *) malloc(MAX_SIZE_MSG + 1);
 if(logMsg == NULL) {
 printf("%s: Out of memory in
update_unbound().\n", myName);
 free(mysqlQuery);
 exit(-1);
 }
 sprintf(logMsg, "IP address %s deleted from
ipman_db.unbound_ips by user %s.\n", ip, username);
 printf("%s: %s", myName, logMsg);
 logEntry(logMsg, "/var/log/ipman/ipman.bind");
 mysql_close(&conn);
 free(mysqlQuery);
 return(0);
 }

} // update_unbound()

int validate_addr(const char *addr, int *lbound, int *ubound) {

 int octet1 = 0, octet2 = 0, octet3 = 0, octet4 = 0; /* Numeric
octets */
 char *strOctet1, *strOctet2, *strOctet3, *strOctet4; /* Octets as
strings */
 char tmpAddr[MAX_SIZE_IPADDR + 1]; /* temp string for const
char */
 char *strLower;

112

 char *strUpper;
 int MAX_SIZE_OCTET = 4;
 enum inputType { INVALID, SINGLE_IP, IP_RANGE, C_BLOCK };

 enum inputType input;

 strOctet1 = (char *) malloc(MAX_SIZE_OCTET);
 strOctet2 = (char *) malloc(MAX_SIZE_OCTET);
 strOctet3 = (char *) malloc(MAX_SIZE_OCTET);
 strOctet4 = (char *) malloc(MAX_SIZE_OCTET);

 strcpy(tmpAddr, addr);
 strOctet1 = strtok(tmpAddr, ".");
 strOctet2 = strtok(NULL, ".");
 strOctet3 = strtok(NULL, ".");
 strOctet4 = strtok(NULL, "\n");

 if(is_numeric(strOctet1) &&
 is_numeric(strOctet2) &&
 is_numeric(strOctet3)) {
 sscanf(strOctet1, "%d", &octet1);
 sscanf(strOctet2, "%d", &octet2);
 sscanf(strOctet3, "%d", &octet3);

 }
 else {
 input = INVALID;
 return(input);
 }

 sscanf(tmpAddr, "%d.%d.%d.%d", &octet1, &octet2, &octet3,
&octet4);
 if(is_numeric(strOctet4)) { /* We have a single IP address or
C block */
 sscanf(strOctet4, "%d", &octet4);
 if(! ((octet1 >= 1 && octet1 <= 223) &&
 (octet2 >= 0 && octet2 <= 255) &&
 (octet3 >= 0 && octet3 <= 255) &&
 ((octet4 >= 1 && octet4 <= 254) || octet4 == 0))
) {
 input = INVALID;
 return(input);
 }
 else if(octet4 == 0) { /* We have a C block */
 *lbound = 2;
 *ubound = 254;
 input = C_BLOCK;
 return(input);
 }
 else { /* A single IP */
 *lbound = 0;
 *ubound = 0;
 input = SINGLE_IP;
 return(input);
 }
 }

113

 else { /* We potentially have a range, verify it and return
INVALID or IP_RANGE */
 strLower = strtok(strOctet4, "-");
 strUpper = strtok(NULL, "\n");
 if(is_numeric(strLower)) {
 sscanf(strLower, "%d", lbound);
 }
 else {
 input = INVALID;
 return(input);
 }

 if(is_numeric(strUpper)) {
 sscanf(strUpper, "%d", ubound);
 }
 else {
 input = INVALID;
 return(input);
 }

 if(*lbound <= 1 || *ubound >= 255 || *lbound >= *ubound)
{
 input = INVALID;
 return(input);
 }
 else {
 input = IP_RANGE;
 return(input);
 }
 }
}

114

Appendix B

 IPMAN_DB DATA DEFINITIONAL LANGUAGE

115

--
-- Table structure for table `ips_and_macs`
--

CREATE TABLE ips_and_macs (
 ip_addr int(11) unsigned NOT NULL default '0',
 netmask varchar(15) NOT NULL default '',
 mac_addr varchar(17) default NULL,
 scan tinyint(4) NOT NULL default '0',
 PRIMARY KEY (ip_addr)
) TYPE=InnoDB;

--
-- Table structure for table `no_response`
--

CREATE TABLE no_response (
 ip_addr int(11) unsigned NOT NULL default '0',
 pass_num tinyint(4) NOT NULL default '0',
 pass_time timestamp(14) NOT NULL,
 PRIMARY KEY (ip_addr),
 KEY IDX_no_response_FK (ip_addr),
 CONSTRAINT `no_response_ibfk_1` FOREIGN KEY (`ip_addr`) REFERENCES
`ips_and_macs` (`ip_addr`)
) TYPE=InnoDB;

--
-- Table structure for table `staff_members`
--

CREATE TABLE staff_members (
 staff_id int(11) NOT NULL default '0',
 staff_name varchar(16) default NULL,
 staff_password varchar(32) default NULL,
 userlevel int(11) NOT NULL default 1,
 PRIMARY KEY (staff_id),
 KEY IDX_unbound_ips_FK (staff_id)
) TYPE=InnoDB;

--
-- Table structure for table `unbound_ips`
--

CREATE TABLE unbound_ips (
 ip_addr int(11) unsigned NOT NULL default '0',
 released_to varchar(80) NOT NULL default '',
 time_unbound datetime NOT NULL default '0000-00-00 00:00:00',
 staff_id int(11) NOT NULL default '0',
 PRIMARY KEY (ip_addr),
 KEY IDX_unbound_ips_FK (ip_addr),
 KEY IDX_staff_id_FK (staff_id),
 CONSTRAINT `unbound_ips_ibfk_1` FOREIGN KEY (`ip_addr`) REFERENCES
`ips_and_macs` (`ip_addr`),
 CONSTRAINT `unbound_ips_ibfk_2` FOREIGN KEY (`staff_id`) REFERENCES
`staff_members` (`staff_id`)
) TYPE=InnoDB;

116

